305 research outputs found

    Mesopredator management: effects of red fox control on the abundance, diet and use of space by feral cats

    Full text link
    Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators—mesopredators—often remain after apex predator removal. Despite concern that these mesopredators may be \u27released\u27 in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent

    The effects of food waste on wildlife and humans

    Full text link
    A reduction in the loss and waste of human food is a global issue for addressing poverty and hunger in poorer nations, and for reducing the environmental footprint of the agriculture sector. An emerging issue, however, is that food wasted by humans is often accessible to wildlife, affecting wildlife ecology and behaviour, as well as ecological processes and community dynamics. Here we highlight the extent of such impacts, drawing on examples from mammalian predators and other taxonomic groups. We then develop two conceptual models. The first shows how wildlife access to food waste can exacerbate human-wildlife conflicts. The second highlights that when food waste is removed, the effects on wildlife and ecosystem processes should be monitored. The conceptual models are important when considering that large quantities of food waste are intentionally and unintentionally provided to wildlife around the world. We conclude there is an urgent need to change the way people currently manage the food we produce

    World Scientists’ Warning of a Climate Emergency

    Get PDF
    Scientists have a moral obligation to clearly warn humanity of any catastrophic threat and to “tell it like it is.” On the basis of this obligation and the graphical indicators presented below, we declare, with more than 11,000 scientist signatories from around the world, clearly and unequivocally that planet Earth is facing a climate emergency

    Golden jackal expansion in Europe: a case of mesopredator release triggered by continent-wide wolf persecution?

    Full text link
    Top-down suppression by apex predators can limit the abundance and spatial distribution of mesopredators. However, this phenomenon has not been studied over long time periods in human-dominated landscapes, where the strength of this process might be limited. Here, we used a multi-scale approach to analyse interactions between two canids in the human-dominated landscapes of Europe. We tested the hypothesis that the range expansion of golden jackals (Canis aureus) was triggered by intensive persecution and resulting decline of the apex predator, the grey wolf (Canis lupus). To do so, we (1) reviewed literature to reconstruct the historic changes in the distribution and abundance of the two canid species on the continental scale, (2) analysed hunting data patterns for both species in Bulgaria and Serbia, and (3) surveyed jackal persistence in eight study areas that became re-colonized by territorial wolves. The observed trends were generally consistent with the predictions of the mesopredator release hypothesis and supported the existence of top-down suppression by wolves on jackals. We observed inverse patterns of relative abundance and distribution for both canid species at various spatial scales. In most (seven out of eight) cases of wolf re-colonization of jackal territories, jackals disappeared or were displaced out or to the periphery of the newly established wolf home-ranges. We suggest that wolf extermination could be the key driver that enabled the expansion of jackals throughout Europe. Our results also indicate that top-down suppression may be weakened where wolves are intensively persecuted by humans or occur at reduced densities in human-dominated landscapes, which has important management implications and warrants further research

    An applied ecology of fear framework: linking theory to conservation practice

    Get PDF
    Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence

    Anthropogenic resource subsidies determine space use by Australian arid zone dingoes: an improved resource selection modelling approach

    Get PDF
    Dingoes (Canis lupus dingo) were introduced to Australia and became feral at least 4,000 years ago. We hypothesized that dingoes, being of domestic origin, would be adaptable to anthropogenic resource subsidies and that their space use would be affected by the dispersion of those resources. We tested this by analyzing Resource Selection Functions (RSFs) developed from GPS fixes (locations) of dingoes in arid central Australia. Using Generalized Linear Mixed-effect Models (GLMMs), we investigated resource relationships for dingoes that had access to abundant food near mine facilities, and for those that did not. From these models, we predicted the probability of dingo occurrence in relation to anthropogenic resource subsidies and other habitat characteristics over ∼ 18,000 km(2). Very small standard errors and subsequent pervasively high P-values of results will become more important as the size of data sets, such as our GPS tracking logs, increases. Therefore, we also investigated methods to minimize the effects of serial and spatio-temporal correlation among samples and unbalanced study designs. Using GLMMs, we accounted for some of the correlation structure of GPS animal tracking data; however, parameter standard errors remained very small and all predictors were highly significant. Consequently, we developed an alternative approach that allowed us to review effect sizes at different spatial scales and determine which predictors were sufficiently ecologically meaningful to include in final RSF models. We determined that the most important predictor for dingo occurrence around mine sites was distance to the refuse facility. Away from mine sites, close proximity to human-provided watering points was predictive of dingo dispersion as were other landscape factors including palaeochannels, rocky rises and elevated drainage depressions. Our models demonstrate that anthropogenically supplemented food and water can alter dingo-resource relationships. The spatial distribution of such resources is therefore critical for the conservation and management of dingoes and other top predators

    Carcass use by mesoscavengers drives seasonal shifts in Australian alpine scavenging dynamics

    Get PDF
    Context. Carrion is a high-energy and nutrient-rich resource that attracts a diverse group of vertebrate scavengers. However, despite the carrion pool being highly seasonal in its availability, there is little understanding of how scavengers utilise carcasses across all four seasons. Aim. To assess how season influences carcass-detection times by vertebrate scavengers and their rates of scavenging. Methods. We used remote cameras to monitor vertebrate scavenging at 15 eastern grey kangaroo (Macropus giganteus) carcasses in four consecutive seasons (summer, autumn, winter, and spring; total 58 carcasses) in the Australian Alps. Key results. In total, 745 599 remote-camera images were captured, within which 34 vertebrate species were identified, nine of which were recorded to actively scavenge. Time to first detection of carcasses by vertebrate scavengers was 5.3 and 9.6 times longer during summer (average 144 h) than during spring (average 34 h) and winter (average 24 h) respectively. Rates of vertebrate scavenging were highest in winter and spring, with brushtail possums (Trichosurus vulpecula) accounting for 78% of all scavenging events during winter, and ravens (Corvus spp.) accounting for 73% during spring. High rates of carcass use by these mesoscavengers may reflect a scarcity of other food sources, the demands of their breeding season, or a relative absence of scavenging by larger dominant species such as dingoes (Canis dingo) and wedge-tailed eagles (Aquila audax). Conclusions. These findings demonstrate the highly seasonal nature of vertebrate scavenging dynamics in an alpine ecosystem, and that mesoscavengers, not apex scavengers, can dominate the use of carcasses. Implications. Accounting for the effects of season is integral to understanding the way animals utilise carcasses in alpine and other strongly seasonal environments; and for developing further our knowledge of ecosystem processes linked to decomposition

    Evaluating aerial net gunning and chemical immobilisation for capture of invasive sambar deer (Rusa unicolor) and red deer (Cervus elaphus) in alpine Australia

    Get PDF
    Context: Deer species are expanding in distribution and abundance in Australia. There is increasing focus on the ecology of these species, but effective deer capture methods are needed for telemetry studies. Aims: The aims of this study were to develop, assess and refine a helicopter-based capture technique for wild sambar deer (Rusa unicolor) and red deer (Cervus elaphus), based on trials in south-eastern Australia. Methods: We captured and collared 14 sambar deer and five red deer in two operations in Kosciuszko National Park in 2021, using a combination of aerial net gunning and chemical immobilisation delivered via hand injection. Captured animals were fitted with GPS collars to track their movements and activity post-capture. Physiological measurements were recorded as a means of assessing responses to capture and to optimise animal welfare outcomes. Key results: Twenty-two deer were pursued and captured, with a total mortality rate of 14% (n = 3). The frequency of mortalities decreased from the first operation (17%) to the second operation (10%), largely attributed to allowable helicopter pursuit times being reduced. Post-release movement data indicated that delayed mortality due to capture did not occur. Activity of collared deer was lowest immediately following collaring, suggesting the procedure caused short-term decreases in deer activity. Conclusions: Aerial capture of wild sambar deer and red deer poses animal welfare risks, but these can be minimised through the refinement in net gunning and pharmacological procedures to minimise animal stress. Implications: This study describes an effective method for the safe capture of sambar deer and red deer, which will assist future wildlife researchers to further refine helicopter-based capture protocols and to collect spatial ecology and survival information about these species

    A Scoping Review of Dingo and Wild-Living Dog Ecology and Biology in Australia to Inform Parameterisation for Disease Spread Modelling

    Get PDF
    Background: Dingoes and wild-living dogs in Australia, which include feral domestic dogs and dingo-dog hybrids, play a role as reservoirs of disease. In the case of an exotic disease incursion—such as rabies—these reservoirs could be a threat to the health of humans, domestic animals and other wildlife in Australia. Disease spread models are needed to explore this impact and develop mitigation strategies for responding to an incursion. Our study aim was to describe relevant information from the literature, using a scoping review, on specific topics related to dingo and wild-living dog ecology and biology (topics of interest) in Australia to inform parameterisation of disease spread modelling and identify major research gaps.Methods: A broad electronic search was conducted in five bibliographic databases and grey literature. Two levels of screening and two levels of data extraction were each performed independently by two reviewers. Data extracted included topics of interest investigated, type of population sampled, the presence of lethal control, type of environment, years of collection and GPS coordinates of study sites.Results: From 1666 records captured, the screening process yielded 229 individual studies published between 1862 and 2016. The most frequently reported topics of interest in studies were index of abundance (n = 93) and diet (n = 68). Among the three key parameters in disease spread modelling (i.e., density, contacts and home range), data on density and contacts were identified as major research gaps in the literature due to the small number of recent studies on these topics and the scarcity of quantitative estimates. The research reviewed was mostly located around central Australia and the east coast, including a few studies on density, contacts and home range. Data from these regions could potentially be used to inform parameterisation for disease spread modelling of dingoes and wild-living dogs. However, the number of studies is limited in equatorial and tropical climate zones of northern Australia, which is a high-risk area for a rabies incursion.Conclusions: Research in northern regions of Australia, especially to generate data regarding density, contacts and home ranges, should be prioritised for future research on dingoes and wild-living dogs
    • …
    corecore