218 research outputs found

    Unsaturated fatty acids suppress interleukin-2 production and transferrin receptor expression by concanavalin A-stimulated rat Iymphocytes

    Get PDF
    The proliferation of T-lymphocytes is dependent upon their ability to synthesize and secrete the cytokine, interleukin-2, and to express cell surface receptors for interleukin-2 and transferrin. We have previously reported that certain fatty acids inhibit mitogen-stimulated T-lymphocyte proliferation. We now report that unsaturated fatty acids decrease the concentration of interleukin-2 in the culture medium of such cells by up to 45%. This suggests that unsaturated fatty acids inhibit lymphocyte proliferation by suppressing interleukin-2 production. However, lymphocyte proliferation was only partially restored by addition of exogenous interleukin-2 to cell culture medium in the presence of unsaturated fatty acids, indicating that these fatty acids also affect other processes involved in the control of proliferation. Saturated fatty acids, which also inhibit lymphocyte proliferation, did not affect the interleukin-2 concentration in the culture medium suggesting a different mechanism for their action. Neither saturated nor unsaturated fatty acids affected the expression of the interleukin-2 receptor by mitogenstimulated lymphocytes. In contrast, unsaturated fatty acids decreased expression of the transferrin receptor by up to 50%. These observations suggest that the mechanism by which unsaturated fatty acids inhibit lymphocyte proliferation involves suppression of interleukin-2 production and of transferrin receptor expression. The mechanism for the inhibitory action of saturated fatty acids is not clear

    The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies.

    Get PDF
    Chronic low-grade inflammation accompanies obesity and its related chronic conditions. Both peripheral blood mononuclear cells (PBMCs) and cell lines have been used to study whether vitamin D has immune modulating effects; however, to date a detailed systematic review describing the published evidence has not been completed. We therefore conducted a systematic review on the effect of vitamin D on the protein expression and secretion of inflammatory markers by human-derived immune cells. The review was registered at the International Prospective Register for Systematic Reviews (PROSPERO, Registration number CRD42015023222). A literature search was conducted using Pubmed, Science Direct, Scopus, Web of Science and Medline. The search strategy used the following search terms: Vitamin D or cholecalciferol or 1,25-dihydroxyvitamin or 25-hydroxy-Vitamin D and Inflam* or cytokine* and supplement* or cell*. These terms were searched in the abstract, title and keywords. Inclusion criteria for study selection consisted of human-derived immune cell lines or cellular studies where PBMCs were obtained from humans, reported in the English language, and within the time period of 2000 to 2015. The selection protocol was mapped according to PRISMA guidelines. Twenty three studies (7 cell line and 16 PBMCs studies) met our criteria. All studies selected except one used the active metabolite 1,25(OH)2, with one study using cholecalciferol and two studies also using 25(OH)D. Four out of seven cell line studies showed an anti-inflammatory effect where suppression of key markers such as macrophage chemotactic protein 1, interleukin 6 and interleukin 8 were observed. Fourteen of sixteen PBMC studies also showed a similar anti-inflammatory effect based on common inflammatory endpoints. Mechanisms for such effects included decreased protein expression of toll-like receptor-2 and toll-like receptor-4; lower levels of phosphorylated p38 and p42/42; reduced expression of phosphorylated signal transducer and activator of transcription 5 and decreased reactive oxygen species. This review demonstrates that an anti-inflammatory effect of vitamin D is a consistent observation in studies of cell lines and human derived PBMCs

    Glutamine: Metabolism and immune function, supplementation and clinical translation

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations

    Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion

    Get PDF
    AbstractIn pancreatic β-cells, glutamate has been proposed to mediate insulin secretion as a glucose-derived factor, although it is also considered for its sole catabolic function. Hence, changes in cellular glutamate levels are a matter of debate. Here, we investigated the effects of glucose and the glutamate precursor glutamine on kinetics of glutamate levels together with insulin secretion in INS-1E β-cells. Preincubation at low (1 mM) glucose resulted in reduced cellular glutamate levels, which were doubled by exposure to glutamine. In glutamine-deprived cells, 5 mM glucose restored glutamate concentrations. Incubation at 15 mM glucose increased cellular glutamate, along with stimulation of insulin secretion, following both glutamine-free and glutamine-rich preincubations. Nuclear magnetic resonance (NMR) spectroscopy of INS-1E cells exposed to 15 mM D-[1-13C]glucose revealed glutamate as the major glucose metabolic product. Branched-chain amino acids, such as leucine, reduced cellular glutamate levels at low and intermediate glucose. This study demonstrates that glucose stimulates glutamate generation, whereas branched-chain amino acids promote competitive glutamate expenditure

    Novel dehydroepiandrosterone troche supplementation improves the serum androgen profile of women undergoing in vitro fertilization

    Get PDF
    Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in the circulation and has potent multifunctional activity. Epidemiological evidence suggests that levels of serum DHEA decrease with advancing age, and this has been associated with onset or progression of various age-related ailments, including cognitive decline and dementia, cardiovascular disease, and obesity. Consequently, these findings have sparked intense research interest in DHEA supplementation as an “antiaging” therapy. Currently, DHEA is being used by 25% of in vitro fertilization (IVF) clinicians as an adjuvant in assisted reproductive programs, yet the therapeutic benefit of DHEA is unclear. Here, we examined the use of novel DHEA-containing oral troches in patients undertaking IVF and investigated the impact of these troches on their serum androgen profile. This retrospective study determined the androgen profile of 31 IVF patients before (baseline) and after DHEA supplementation (with DHEA). Baseline serum measurements of testosterone (total and free), DHEA sulfate (DHEAS), sex hormone-binding globulin (SHBG), and androstenedione were made before and after supplementation. Each patient received DHEA troches containing 25 mg of micronized DHEA, and troches were administered sublingually twice daily for a period of no greater than 4 months. Adjuvant treatment with DHEA boosted the serum concentration of a number of androgen-related analytes, including total and free testosterone, androstenedione, and DHEAS, while serum SHBG remained unchanged. Supplementation also significantly increased the free-androgen index in IVF patients. Interestingly, the increase in serum analyte concentration following DHEA supplementation was found to be dependent on body mass index (BMI), but not individual age.Patients with the lowest BMI (30.0 kg/m2) tended to have lower androgen responses following DHEA supplementation, but these were not statistically different from the corresponding baseline level. This method of DHEA administration results in a similar enhancement of testosterone, DHEAS, and androstenedione levels in comparison with other methods of administration. Furthermore, we showed that BMI significantly influences DHEA uptake and metabolism, and that BMI should be carefully considered during dosage calculation to ensure a significant and robust androgen-profile boost

    Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and Ăź-Cell Dysfunction

    Get PDF
    The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation
    • …
    corecore