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Abstract
Chronic low-grade inflammation accompanies obesity and its related chronic conditions.

Both peripheral blood mononuclear cells (PBMCs) and cell lines have been used to study

whether vitamin D has immune modulating effects; however, to date a detailed systematic

review describing the published evidence has not been completed. We therefore conducted

a systematic review on the effect of vitamin D on the protein expression and secretion of

inflammatory markers by human-derived immune cells. The review was registered at the

International Prospective Register for Systematic Reviews (PROSPERO, Registration

number CRD42015023222). A literature search was conducted using Pubmed, Science

Direct, Scopus, Web of Science and Medline. The search strategy used the following

search terms: Vitamin D or cholecalciferol or 1,25-dihydroxyvitamin or 25-hydroxy-Vitamin

D and Inflam* or cytokine* and supplement* or cell*. These terms were searched in the

abstract, title and keywords. Inclusion criteria for study selection consisted of human-

derived immune cell lines or cellular studies where PBMCs were obtained from humans,

reported in the English language, and within the time period of 2000 to 2015. The selection

protocol was mapped according to PRISMA guidelines. Twenty three studies (7 cell line

and 16 PBMCs studies) met our criteria. All studies selected except one used the active

metabolite 1,25(OH)2, with one study using cholecalciferol and two studies also using 25

(OH)D. Four out of seven cell line studies showed an anti-inflammatory effect where sup-

pression of key markers such as macrophage chemotactic protein 1, interleukin 6 and inter-

leukin 8 were observed. Fourteen of sixteen PBMC studies also showed a similar anti-

inflammatory effect based on common inflammatory endpoints. Mechanisms for such

effects included decreased protein expression of toll-like receptor-2 and toll-like receptor-4;

lower levels of phosphorylated p38 and p42/42; reduced expression of phosphorylated sig-

nal transducer and activator of transcription 5 and decreased reactive oxygen species. This

review demonstrates that an anti-inflammatory effect of vitamin D is a consistent observa-

tion in studies of cell lines and human derived PBMCs.
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Introduction
Inflammation is recognised as the underlying characteristic of obesity and related chronic dis-
ease including type two diabetes [1–3] and cardiovascular disease [4–7]. In fact, inflammation
may contribute to a multitude of chronic diseases [8]. Peripheral blood mononuclear cells
(PBMCs) play a key role in the development and progression of obesity-related chronic dis-
eases and have recently been suggested to be of potential use as biomarkers of health status [9–
11]. Systemic inflammation is characterised by elevated levels of inflammatory biomarkers in
the blood stream such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleu-
kin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-12 (IL-12).

Inadequate vitamin D status is common in many parts of the world [12] and is associated
with obesity and related chronic disease [13–16]. The main source of vitamin D is through
endogenous production, whereby solar UV-B irradiates 7-dehydrocholesterol present in the
skin to generate cholecalciferol [17, 18], which is subsequently activated in the liver and kidney.
The second source of vitamin D is dietary intake, which includes supplementation with either
ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) [18]. Classifying vitamin D status is
based upon the serum levels of 25(OH)D [17, 19]. However, the appropriate level of circulating
25(OH)D required for good health, is hotly debated [20, 21]. Vitamin D is argued by many to
have potential extra-skeletal health effects, impacting energy balance and possibly reducing
inflammation [21–25]. However, the findings are inconsistent from cross-sectional studies,
and human clinical trials that have investigated the potential links between vitamin D status
and systemic inflammatory markers [26–29].

Cellular studies indicate that vitamin D is a key modulator of immune function and inflam-
mation [30, 31]. There is an increasing appreciation that vitamin D exerts broad regulatory
effects on cells of the adaptive and innate immune system [32]. Current evidence suggests that
the circulating level of 25(OH)D may be crucial for the optimal anti-inflammatory response of
human monocytes [22]. The conversion of 25(OH)D to its active form 1,25(OH)2 occurs
locally in immune system cells. The active metabolite of vitamin D has an anti-inflammatory
effect on the inflammatory profile of monocytes [17, 33, 34], down-regulating the expression
and production of several pro-inflammatory cytokines including TNF- α, IL-1β, IL-6, and IL-8
[33, 34]. Some immediate vitamin D action occurs in cells that possess the membrane vitamin
D receptor (mVDR) [35]. However, the majority of vitamin D’s biological functions are medi-
ated through the regulation of gene expression. The active metabolite of vitamin D 1,25 dihy-
droxyvitamin D (1,25(OH)2D3) binds to its nuclear receptor (nVDR) with high affinity and
specificity. The vitamin D-nVDR forms a heterodimer with the retinoid X receptor and this
complex amplifies or represses transcription of the target genes through its binding to vitamin
D responsive elements on DNA [17]. The nVDR is found in multiple cells of the immune sys-
tem such as human Treg cells [36], neutrophils [37], dendritic cells, B cells [38] and macro-
phages [39].

To the best of our knowledge, there are no previously published systematic reviews that
comprehensively assess the evidence for anti-inflammatory effects of vitamin D in human
derived immune cells and human cell lines. We therefore embarked on this objective by target-
ing human-derived immune cell lines or PBMCs obtained from healthy participants or those
with obesity-related chronic disease. In addition, we aimed to identify the pathways by which
vitamin D modulated inflammation. We conclude that vitamin D has an anti-inflammatory
effect with respect to cytokine expression and production, in both immune cell lines and
PBMCs originating from humans. Furthermore, our review also highlights several mechanisms
of action that may explain this anti-inflammatory effect of vitamin D.

Vitamin D and Inflammation: Systematic Review

PLOSONE | DOI:10.1371/journal.pone.0141770 November 3, 2015 2 / 12

interleukin-10; (IL-12), interleukin-12; (IL-23),
interleukin-23; (MCP-1), monocyte chemotactic
protein 1; (nVDR), nuclear vitamin D receptor;
(PBMCs), peripheral blood mononuclear cells;
(PRISMA), preferred reporting items for systematic
reviews and meta-analyses; (TNF-α), toll-like
receptor (TLR), tumour necrosis factor α; (VDR),
vitamin D receptor.



Materials and Methods
This systematic review assessed the effect of vitamin D on the inflammatory profile of
immune cells, using both human-derived immune cell lines and PBMCs obtained from adult
humans. The primary outcomes were protein expression and secretion of common inflamma-
tory markers such as pro-inflammatory cytokines MCP-1, IL-1β, IL-2, IL-6, IL-8, IL-12, TNF-
α, CRP and anti-inflammatory markers such as IL-10 and IL-4 by immune cells. The protocol
has been registered at the International Prospective Register for Systematic Reviews (PROS-
PERO) website (registration number CRD42015023222, S1 Table. Systematic review
protocol).

A literature search was conducted independently by two reviewers (EKC and KNK) using
Pubmed, Science Direct, Scopus, Wiley and Medline (search updated 19th June 2015). A third
independent reviewer was consulted to resolve discrepancies (PN). The search strategy used
the following search terms: Vitamin D or cholecalciferol or 1,25-dihydroxyvitamin or
25-hydroxy-Vitamin D and Inflam� or cytokine� and supplement� or cell�. These terms were
searched in the abstract, title or keywords. Inclusion criteria for study selection included arti-
cles reported in the English language and within the time period of 2000 to 2015. The study
selection process was mapped according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses guidelines (PRISMA) and can be seen in Fig 1. Study characteris-
tics such as cell line, cell type, participant demographics, vitamin D form, dose, duration of
exposure, presence of an inflammatory stimulus, direction of inflammatory marker change and
pathway were extracted by two independent reviewers (EKC and KNK) and cross-checked as
required (PN) (S2 Table. PRISMA Checklist).

Results

Cell line studies
Seven cell line studies (Table 1) were identified. Six out of the seven studies used the THP-1 cell
line, while two studies used the U937 cell line and one study used Jurkat cells. All cell line stud-
ies administered vitamin D in the form of 1,25(OH)2 and one study also used 25(OH)D. All
studies except one administered vitamin D in conjunction with an inflammatory stimulus.
Overall, the majority of cell line studies (4 out of 7) reported that vitamin D had an anti-inflam-
matory effect, one study reported mixed effects and two studies reported a pro-inflammatory
effect. The most common concentration of 1,25(OH)2 that indicated an anti-inflammatory
effect was 10 nM (4 out of 7 studies). Mechanisms likely to mediate the anti-inflammatory
effect of vitamin D included suppressed phosphorylated p38 (pp38) expression [40], reduced
expression of p-STAT5 [41], and decreased reactive oxygen species levels due to increased cel-
lular glutathione [42] (Fig 2).

PBMC studies
We identified sixteen studies that used PBMCs (Table 1). Of these, fifteen studies administered
vitamin D in the form of 1,25(OH)2, one study used cholecalciferol and one study also used 25
(OH)D. All studies examined the effect of vitamin D in conjunction with an inflammatory
stimulus. Of these, three studies also examined the effect of vitamin D alone without an inflam-
matory stimulus. The majority of PBMC studies showed that vitamin D had an anti-inflamma-
tory effect (14 out of 16 studies), with two studies reporting mixed effects (Table 1). PBMCs
were obtained from healthy participants in fourteen out of sixteen studies and the health status
of participants in two studies was unknown. Six studies used PBMCs, four studies used mono-
cytes, one study used macrophages, five studies used T-cells and one study used mixed

Vitamin D and Inflammation: Systematic Review

PLOSONE | DOI:10.1371/journal.pone.0141770 November 3, 2015 3 / 12



lymphocytes. The two most common concentrations of 1,25(OH)2 that elicited an anti-inflam-
matory response was 10 nM (7 studies) and 100 nM (7 studies). Four studies demonstrated a
dose-dependent response of vitamin D with respect to reducing inflammation, with 1 nM and
10 nM concentrations causing the greatest effects [22, 43–45]. Mechanisms likely to mediate
the anti-inflammatory effect of vitamin D included decreased protein expression of toll-like
receptor-2 (TLR-2) [43, 46] and toll-like receptor-4 (TLR-4) [43, 46], elevated trans-acting T-
cell-specific transcription factor (GATA-3) mRNA through elevating upstream factor signal
transducer and activator of transcription 6 (STAT6) [32], VDR [43], lower levels of pp38 and
p42/42 (ERK1/2) [22, 43], and localization of p65 [43] (Fig 2).

Fig 1. PRISMA flow diagram depicting the systematic study selection process. PBMC, peripheral blood mononuclear cells.

doi:10.1371/journal.pone.0141770.g001
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Table 1. Cell studies examining the impact of vitamin D on inflammation.

Study Cell line/cell
type

Vitamin D form, dose
and time

Stimulation method Significant inflammatory
marker change

Net effect

Cell line studies

Tulk et al 2015 [47] THP-1 1,25(OH)2 (0, 0.1, 10,
100, 500 nM) 25(OH)D
(0, 0.1, 10, 100, 500 nM)

PMA 100 nM overnight IL-1β " Pro-inflammatory
(�100 nM 25(OH)D
and �1 nM 1,25
(OH)2D)

Wang et al 2014 [40] THP-1 1,25(OH)2 (0, 100,
1000, 10000 nM) for 2 h

LPS 0.2 ug/ml for 6, 24 and
48 h

MCP-1 # Anti-inflammatory

Yang et al 2012 [41] THP-1 1,25(OH)2 (0, 100 nM)
for 48 h

LPS 1 ug/ml + IL-15 100
ng/ml for 4 h

IL-6, MCP-1 # Anti-inflammatory

Matilainen et al 2010
[48]

THP-1 1,25(OH)2 (0, 10 nM) for
48 h

LPS 100 ng/ml for 24 h IL-10 mRNA # (8 h) then "
(48 h)

Anti-inflammatory

Matilainen et al 2010
[49]

THP1 + Jurkat
lymphocyte cells

1,25(OH)2 (0, 10 nM) for
24 h

LPS 100 ng/ml for 24 h or 2
ug/ml PHA and 50 ng/ml
TPA

IL-2, IL-10 mRNA # (3, 6 h)
then "(24 h) IL-12 mRNA #
(6h)

Mixed

Lee et al 2011 [50] U937 THP 1,25(OH)2 (0, 10 nM) for
24 h

PMA IL-1β protein expression and
protein level "

Pro-inflammatory

Jain & Micinski 2013
[42]

U937 monocytes 1,25(OH)2 (0, 10, 25
nM) for 24h

No inflammatory stimulant IL-8, MCP-1 # Anti-inflammatory

PBMC studies

Cantorna 2015a [51] PBMCs 1,25(OH)2 (0, 10, 50
nM) for 72 hours

α-Galactoceramide for 72
hours

INF- γ # IL-4 " Anti-inflammatory

Ojaimi 2013b et al
[52]

PBMCs Cholecalciferol, 50,000
IU daily for 10 days,
then 50000 monthly for
3 months

Pam3Cys 100 ng/ml PolyI:
C 10 μg/ml LPS 100 ng/ml
or unstimulated media for
24 h.

TNF-α, IL-6 #, then NC
Unstimulated showed no
effect as basal cytokine
production was so low

Anti-inflammatory
(when serum levels
>100 nM)

Khoo 2011 et al [36] PBMCs 1,25(OH)2 0 or 10-7 M
(100 nM) for 30 min

Pam3Cys 10 mg/ml or LPS
10 ng/ml or RPMI control
for 24 h

IL-6, TNF-α # Anti-inflammatory

Rausch-Fan et al
2002 [44]

PBMCs 1,25(OH)2 (0.01 to 100
nM) for 48 h

PMA 10 ng/ml and
ionomycin 1.25 uM

INF- γ, IL-2, IL-10, TNF-α, IL-
12, IL-1β #, IL-5, IL-10 ", IL-4
NC

Anti-inflammatory
(10-8, 10-7 M)

Takahashi 2002 [53] PBMCs 1,25(OH)2 (0, 0.1,
100nM) for 2 h, 4 h, 8 h
and 24 h

LPS 1 ug/ml or IL-1β 10ng/
ml

IL-8 # (24 h) Anti-inflammatory

Giovanni 2001 et al
[45]

PBMCs 1,25(OH)2 (25, 50, 100
ng) for 12 h

LPS 100 ng/ml TNF-α, IL-1β, IL-6, IL-10 #,
dose-dependent NE when
PBMC incubated without
LPS

Anti-inflammatory

Di Rosa 2012 et al
[46]

Monocyte
derived
macrophages &
monocytes

1,25(OH)2 (0, 1000 nM)
for 24 h

alone or in combination with
TNF-α 100 U/ml or LPS 50
ng/ml for 2 h

Monocytes: IL-1β, IL-6, TNF-
α mRNA NC Macrophages
+ LPS: IL-1β, IL-6 mNRA NC
TNF-α mRNA ",
Macrophages + TNF- α: IL-
1β mNRA NC IL-6, TNF-α
mRNA #, Macrophages
without stimulation: IL-1β, IL-
6, TNF-α #

Monocytes: No
effect;
Macrophages: Anti-
inflammatory

Zhang 2012 et al [22] Monocytes 1,25(OH)2 (0, 1, 10 nM)
for 24 h25(OH)D (0, 15
ng/ml, 30 ng/ml, 50 ng/
ml and 70 ng/ml) for 24
h

10 ng/ml LPS for 24 h IL-6 # dose-response Anti-inflammatory

Du 2009 [54] Monocytes 1,25(OH)2 (0, 100 nM)
for 48 h

LPS 100 ng/ml and LTA 10
ug/ml for 3 h

TNF- α, IL1β # Anti-inflammatory

(Continued)
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Discussion
Inadequate vitamin D status is commonly observed in populations across the world [12]. This
observation parallels the high prevalence of obesity-related chronic diseases that carry a heavy
inflammatory burden. Our objective was to comprehensively review the cellular evidence link-
ing vitamin D with the inflammatory profile of human-derived immune cells.

Our results demonstrated that the active form of vitamin D decreased the inflammatory sta-
tus of cellular models. We found evidence that vitamin D was able to indirectly quench ROS,
which are accepted as a major factor in the onset and development of chronic diseases includ-
ing type 2 diabetes [59]. We also found evidence that vitamin D decreased TLR expression,
which is increased in both immune cells and adipose tissue from overweight and obese subjects
[60]. Furthermore, TLR activation has been implicated in mechanisms of obesity-related insu-
lin resistance and metabolic dysfunction [61, 62]. TLRs are shown to be stimulated by both
endogenous and exogenous factors such as dietary saturated fatty acids [63] and resistin [64],
both of these factors induce inflammatory changes in circulating immune cells [65]. The TLR
transmembrane proteins subsequently initiate classical signaling cascades leading to the activa-
tion of transcription factors, such as NFκB [66] and cytokine production [62]. TLR pathways
also stimulate a variety of cellular responses including host defense in response to microbial
products, and subsequently impact energy metabolism. Stimulated NFκB exerts its action
through binding to DNA and inducing the transcription of many genes involved in various
aspects of innate and adaptive immune responses, such as those coding for cytokines, growth
factors, adhesion molecules [67], and multiple genes that regulate cellular differentiation, sur-
vival and proliferation [68]. Clearly, evidence suggests that 1,25(OH)2 acts to suppress NFκB

Table 1. (Continued)

Study Cell line/cell
type

Vitamin D form, dose
and time

Stimulation method Significant inflammatory
marker change

Net effect

Sadeghi 2006 et al
[43]

Monocytes 1,25(OH)2 (0.01 to 100
nM) for 48 h

10 ng LPS or 10 ug LTA for
4 h

TNF- α #, dose-response Anti-inflammatory
(10-9 to 10-7 M)

Sloka 2011 et al [32] T cells 1,25(OH)2 (0, 0.1 and
10 nM) of 1,25(OH)2

mouse anti-human CD3 10
or 1000 ng/mL for 3 days

IFN- γ, IL-17 #, IL-5 " Anti-inflammatory

Thien 2005 et al [55] T cells 1,25(OH)2 (0, 10 nM) for
7–14 days

IL-4 500 U/mL or IL-12 200
U/mL

INF- γ, IL-4, IL-6, IL-13 ", IL-
2 #

Mixed

Khoo 2011 et al [36] Treg cells, T
convential cells

1,25(OH)2 (0, 100 nM)
for 8 days

Treg and Tconv cells were
stimulated with anti-CD3/
anti-CD28 monoclonal
antibody-coated
microbeads and PMA

IL-4, IL-10 ", TNF-α ", IL-2,
IFN-γ, IL-17 NC

Mixed

Zhang, Leung &
Goleva 2013 [56]

PBMCs-CD14+

and CD14- T
cells

1,25(OH)2 (0, 10 nM) for
24 h

LPS 10ng/ml for 6 h IL-6 # Anti-inflammatory

Jeffery 2009 et al a

[57]
T cells
CD4+CD25-

1,25(OH)2 (0, 100 nM)
for 5 days

anti-CD3- and anti-CD28
Antibody-coated beads

IFN- γ, IL-2, IL-17, IL-21 #,
IL-10 "

Anti-inflammatory

Jirapongsananuruk
2000 et al [58]

PBMCs-
lymphocyte

1,25(OH)2 (0, 1000 nM)
for 72 h

anti-CD3 IL-5, IL-13 " IFN- γ # Anti-inflammatory

25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2), interferon gamma IFN-γ, interleukin 1β (IL1β), interleukin 2 (IL-2), interleukin 4 (IL-

4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15),

interleukin 17 (IL-17), interleukin 21 (IL-21), monocyte chemotatic protein-1 (MCP-1), no change NC, peripheral blood mononuclear cells (PBMCs), tumor

necrosis factor alpha (TNF- α).
a Health status of participants unknown
b Study conducted in participants with inadequate vitamin D status (serum 25(OH)D < 50 nM

doi:10.1371/journal.pone.0141770.t001
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activity. It is possible that vitamin D acts through suppression of the NFκB transcriptional
activity, or through regulation of cellular ROS levels, which subsequently alter NFκB transcrip-
tional activity. However, the precise pathway(s) awaits confirmation. It is also possible, that
inhibition of inflammatory signalling by vitamin D could happen upstream of modulation of
transcriptional factor action.

It is also possible that vitamin D may be exerting anti-inflammatory effects through non-
genomic pathways initiated at the plasma membrane VDR [35] (Fig 2). Binding of 1,25(OH)
2D at the plasma membrane VDR may result in the activation of one or more second messen-
ger systems, such as phospholipase C (and subsequently protein kinase C, through generation
of both diacylglycerol and a rise in intracellular Ca2+), and G protein-coupled receptors.

Fig 2. Overview of VDR-mediated regulation of cytokine transcription, production and secretion in immune cells. Interaction of VD3 and VDR leads
to anti-inflammatory effects through negative regulation of NFκB and STAT1/5-mediated signalling. This results in decreased transcription of TNF-α, IL-6,
MCP1 and IL-12β. VDR activation promotes increased intracellular glutathione levels that partially or fully attenuates excessive ROS production (ROS can
activate pro-inflammatory NFκB signalling). Activated VDR regulates transcription of IL-2 and IL-10 through epigenetic and conformational changes in the
promoter region of these genes. VDR association with the promoter region occurs in a cyclic fashion, which leads to initial gene suppression, followed by
upregulation of IL-2 and IL-10 expression after 48 hours. Pro-inflammatory effects of VD3 were reported and suggested to be linked to increased IL-1β
production possibly related to increased ERK1/2 phosphorylation and the transcription factor CEBPβ. The VDR is believed to modulate pro-inflammatory
TLR expression both positively and negatively, but the mechanisms are unknown. Plasmamembrane associated VDRmay induce rapid effects through non-
genomic pathways such as modulation of intracellular calcium levels, parathyroid hormone G-protein coupled or other second messenger systems. Non-
genomic pathways may cooperate with genomic pathways to influence gene expression. CCAAT/enhancer binding protein beta (CEBPβ), extracellular
signal-regulated kinase1/2 (ERK1/2), janus kinase (JAK), monocyte chemotatic protein1 (MCP-1), nuclear factor kappa light chain enhancer of activated B
cells (NFκB), mitogen activated protein kinase (p38 MAPK), retinoid X receptor (RXR), reactive oxygen species (ROS), signal transducer and activator of
transcription1/5 (STAT1/5), toll-like receptor-2/4 (TLR2/4), tumour necrosis factor alpha (TNF-α), vitamin D3 (VD3), vitamin D receptor (VDR).

doi:10.1371/journal.pone.0141770.g002
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Furthermore, non-genomic pathways could cooperate with the classical genomic pathway via
cross-talk to influence gene expression. Perhaps application of a systems biology approach may
reveal additional mechanisms of action.

We are unable to comment on whether 25(OH)D modulates inflammation, as few studies
used this form of vitamin D. However, we and others [22] believe that prevailing 25(OH)D lev-
els may be crucial since they influence local tissue concentrations of the active vitamin D
metabolite [69]. Serum 25(OH)D levels as high as 120 nmol/L may be necessary for optimal
immune function [52]. Indeed, it was reported [52] that the anti-inflammatory benefit of vita-
min D was only seen in those individuals in whom 25(OH)D rose to>100 nmol/L. Beneficial
effects disappeared when vitamin D status dropped to below 100 nmol/L. Since human recom-
mendations for good health are based on appropriate serum levels of 25(OH)D, cellular studies
could asses the effect of various doses of 25(OH)D that reflect/mimic whole body circulating
concentrations of the hormone. In this systematic review, we did not investigate the impact of
vitamin D on subsequent cell function. Potential therapeutic agents like vitamin D which target
immune pathways such as NFκB, ROS quenching and JAK, must be able to antagonize the
harmful effects of inflammation without affecting host defense functions. Further studies are
therefore required to determine the full effect of vitamin D on other parameters of immune
and cellular function.

Conclusion
Vitamin D consistently displayed anti-inflammatory effects in both human cell lines and
PBMCs. Cellular studies which examine the impact of 25(OH)D on inflammatory status and
responses are now required. Clinical studies are warranted to confirm whether supplementa-
tion and elevation in circulating vitamin D levels are able to modulate inflammation and
improve outcomes or prevent chronic disease.
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