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1. Introduction 

L-Arginine is synthesised in vivo from L-glutamine, L-glutamate, or L-proline via the 
intestinal-renal axis (Fig. 1A) in humans and most other mammals (Wu et al., 2009). In 
humans, plasma L-glutamine is the precursor of 80% of plasma L-citrulline while plasma 
L-citrulline, in turn, is the precursor of 10% of plasma L-arginine (van de Poll et al., 2007). 
Although the intestine consumes L-glutamine at a high rates, dependent on L-glutamine 
supply (and production from the skeletal muscle), approximately 13% of L-glutamine taken 
up by the intestine is converted to L-citrulline, so that quantitatively, L-glutamine is the 
major precursor for intestinal release of L-citrulline (van de Poll et al., 2007), which can be 
further converted to L-arginine. These observations highlight the importance of 
L-arginine/L-glutamine metabolic coupling, especially as L-arginine is one of the most 
potent secretagogues of insulin from the pancreatic beta cells (Palmer et al., 1976), whereas 
L-arginine deficiency is associated with insulinopenia and failure to secrete insulin in 
response to glucose (Spinas et al., 1999). L-Arginine is essential for metabolism and function 
of multiple body organs, with decreased plasma and cellular levels of L-arginine reported in 
type 2 diabetic subjects (Pieper & Dondlinger, 1997). 
Since L-arginine is the precursor of nitric oxide (NO)*, which serves as a key cell signalling 

molecule in pancreatic islet -cells, restriction in the availability of L-arginine is likely to  
 

                                                 
* Abbreviations used: CAT, catalase; GSH, glutathione; GSSG, glutathione disulphide; GSPx, 
glutathione peroxidase; GSRd, glutathione disulphide reductase; HSP70, 70-kDa member of heat shock 

protein family; eHSP70, extracellular heat shock protein of 70 kDa; IFN-, interferon-; IB, a member of 

the inhibitors of nuclear factor B; IKK, inhibitor of B kinase; IL-1, interleukin-1; IL1-ra, IL-1 

receptor antagonist; iNOS, inducible nitric oxide synthase; NF-B, a member of nuclear transcription 

factor B; NO, nitric oxide free radical ( N=O);  PPAR-, peroxisome proliferator activated receptor-; 
RNS, reactive nitrogen species; ROS, reactive oxygen species; SNOG, S-nitrosoglutathione; SOD, 
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Fig. 1. The l-arginine/l-glutamine coupling hypothesis of insulin-secreting -cells. (A) 

Pancreatic islet -cells utilise l-arginine for the biosynthesis of NO and l-glutamate for GSH 
generation during secretagogue-stimulated insulin secretion. l-Arginine is provided to the 
pancreas by the intestinal-renal axis from l-glutamine, while l-glutamate is furnished by the 

liver mainly from muscle-derived alanine. In the -cell, NH4+ may contribute to l-arginine 
biosynthesis, through the concerted action of carbamoyl phosphate synthetase I (CPS), 
ornithine transcarbamoylase (OTC), argininosuccinate synthetase (ASS) and 
argininosuccinate lyase (ASL) that eventually produces l-arginine. Skeletal muscle-derived 

l-glutamine is also substrate for the maintenance of GSH metabolism in -cells, but rapidly-

proliferating cells of the gut as well as immune cells compete with -cell for the utilisation of 
l-glutamine. Hence, any minimal reduction in the supply of l-arginine to the pancreas may 
shift l-glutamate metabolism  towards the  synthesis of  NO  instead of GSH, thus leading to 

oxidative stress, inhibition of insulin secretion and eventually -cell death. This  is the case 
of undernourishment, cancer states, trauma, sepsis, major burns and low skeletal muscle 

                                                                                                                            
superoxide dismutase; TBARS, thiobarbituric acid-reactive substances; TNF-, tumor necrosis factor-; 

TNFR, TNF- receptor; UCP, uncoupling protein-2. 
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mechanical activity, where blood glutamine stores may be challenged. Metabolic acidosis, 
by increasing L-glutamine utilisation by the kidney, may also favour glutamine depletion 
unless enteral supplementation or enhanced physical activity takes place. This is also the 
case of psychological-stress motivated inflammatory reactions that may underlie by the 
activation of sympathetic-CRH-histamine system (Fig. 3), which ultimately leads to a Th1-
centered immune response that augments glutamine utilisation. Therefore, L-glutamine 
imbalance, by virtue of deficiently supplying L-arginine to the pancreas, deviates -cell 
glutamate metabolism from the synthesis of GSH to that of NO, leading to oxidative 
stress, impairment of insulin release and insulitis. This ongoing inflammation feeds 
forward NO metabolism, which enhances L-glutamine consumption thus perpetuating 
this cyclic condition that leads to type 1 diabetes mellitus (T1DM) (B). Physical exercise, 
on the other hand, may improve L-glutamine supply from the skeletal muscle and 
counteract Th1-mediated inflammation due to the production of type 2 cytokines, such as 
IL-6. Immunomodulatory action of exercise may also involve heat shock protein 
production and other anti-inflammatory mediators. Arrow widths indicate the intensity of 
the metabolic flux through each pathway. 
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contribute to derangements in the secretion and action of insulin (Newsholme et al., 2009a). 
Hypertension associated with diabetes is related with a decrease in levels of L-arginine 
(Spinas, 1999), as are inflammatory conditions characterised by release of L-arginase by 
activated macrophages (Murphy & Newsholme, 1998). While excessive NO production can 

trigger oxidative/nitrosative stress and is undoubtedly a key mechanism that results in -
cell death (Newsholme et al., 2009a; Spinas, 1999; Michalska et al., 2010), good evidence now 

suggests that lesser amounts of cellular NO, produced by the NF-B-regulated inducible 
nitric oxide synthase (iNOS, EC 1.14.13.39), encoded by the NOS-2 gene, serves as an 
important coupling factor in insulin secreting cells (Newsholme et al., 2009a; Spinas, 1999; 
Michalska et al., 2010). Recent data from the authors’ laboratories has demonstrated that 

L-arginine is an important stimulator of -cell glucose consumption and intermediary 
metabolism (M.S. Krause,  N.H. McClenaghan, P.R. Flatt, P.I. Homem de Bittencourt Jr., C. 
Murphy & P. Newsholme, unpublished results). Such actions lead to increased insulin 
secretion, enhanced antioxidant and protective responses with greater functional integrity 
when challenged with pro-inflammatory cytokines. Given that insulin-secreting cells have 
very low expression levels of antioxidant enzymes, such as catalase (CAT) and glutathione 

peroxidase (GSPx), -cells are particularly prone to chemical stress in the diabetogenic or 
inflammatory environment typical of type 1 and possibly type 2 diabetes (Newsholme et al., 
2009a; Spinas, 1999). In fact, the pathogenesis of type 2 diabetes is now recognised to involve 
both innate and adaptive immunity, since type 2 diabetes is associated with low-grade 
systemic inflammation, infiltration of adipose tissue and pancreatic islets with CD8+ T 
lymphocytes that precede invasion by inflammatory macrophages and activation of these 
cells resulting in pro-inflammatory cytokine secretion (Mandrup-Poulsen, 2010). 
In this chapter, we discuss how the continued supply of L-arginine, physiologically 
provided by the metabolism of L-glutamine via the intestinal-renal axis and from active 

skeletal muscle (which will be enhanced during exercise) is essential for -cell functional 

integrity and indeed for -cell defence, which will be required to avoid/attenuate islet 
inflammation associated with the pathogenic mechanisms underlying type 1 and type 2 
diabetes (Fig. 1B). L-arginine is therefore preserved for essential NO generation and 
stimulation of glucose metabolism, critical for insulin secretion. Additionally, the role of 
skeletal muscle (during exercise) on these metabolic processes is discussed. 

2. Oxidative metabolism and oxidative stress in -cells and type 1 diabetes 

The intense aerobic metabolism, intrinsic to pancreatic -cells, exposes these cells to the 
deleterious effects of high-turnover oxygen-based reactions. In fact, during secretagogue-

stimulated insulin secretion, -cells are associated with accelerated mitochondrial flux of 
electrons and, consequently, elevated tendency towards reactive oxygen species (ROS) 

production (Newsholme et al., 2007). However and notably, -cells present a very low level 
of expression of antioxidant enzymes such as CAT and GSPx compared with other tissues 
and this reduced antioxidant activity is associated with significant increases in lipid 
hydroperoxides, conjugated dienes and protein carbonyls, which are markers for oxidative 

stress (Santini et al., 1997), so that -cells are intrinsically prone to oxidative stress.  
Moreover, a growing body of evidence indicates that, in the pre-diabetic condition, 
antioxidant status may be impaired (Rocie et al., 1997). Hence, the low antioxidant defence 
in certain individuals (even if transiently) may predispose to an enhanced oxidative stress 

and the eventual -cell death that categorises the onset of type 1 and type 2 diabetes.  
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Oxidative stress has long been recognised to play an important role in the development of 
type 1 diabetes and its subsequent complications (Wierusz-Wysock et al., 1997) which are 

aggravated due to the low activities of oxygen free radical scavenging enzymes in islet -
cells, especially mitochondrial manganese-type superoxide dismutase (Mn-SOD;  Asayama 
et al., 1986), glutathione peroxidase (GSPx; Malaisse et al., 1982; Mathews & Leiter, 1999) 
and glutathione disulphide (GSSG) reductase (GSRd; Mathews & Leiter, 1999).  Also, the 
expression of mRNA encoding for several antioxidant enzymes, such as Mn-SOD, 
cytoplasmic copper-zinc type SOD (Cu/Zn-SOD), GSPx, and catalase (CAT), has been 
reported to be lower in islets of Langerhans compared with other mouse tissues (Lenzen et 
al., 1996). Additionally, the administration of antioxidants (nicotinamide, SOD, 

-tocopherol, probucol and the 21-aminosteroid lazaroids), as well as oxygen free radical 
scavengers, have been used in vitro to protect islets from the cytotoxic effects of some pro-

inflammatory cytokines (IL-1, TNF and INF), concurrently providing in vivo protection 
against the development of the autoimmune diabetes process (Nomikos et al., 1986). 
Conversely, studies on MnSOD and CAT transgenics have shown that protection of islets 
from oxidative stress does not alter cytokine toxicity (Chen et al., 2005), which indicates that, 
although related to each other, oxidative stress and cytokine-induced islet toxicity may use 

specific and diverse pathways to induce -cell death. 

An additional complication to this scenario is the fact that -cells express mitochondrial 
uncoupling protein 2 (UCP2) which dissipates the coupling between electron transport from 
ATP formation favouring O2- generation. Since O2- anion is a powerful activator of UCP2, a 
positive feedback mechanism exists in that O2- generation enhances its own formation. This 
is particularly critical under prolonged hyperglycaemia, where UCP2 activity may be 

extremely high thus further depressing insulin secretion by -cells (Newsholme et al., 2007). 
This situation is probably associated with the development of type 2 diabetes. Furthermore, 
the high-glucose, high fatty-acid environment created by either insulin-deficiency or insulin-
resistance favours the expression of NAD(P)H oxidase with consequently enhanced ROS 

production and -cell death (Morgan et al., 2007, Newsholme et al., 2009b). 
Type 1 diabetic patients exhibit major defects in antioxidant protection compared with 
healthy, non-diabetic controls. A significant reduction in total antioxidant status in both 
plasma and serum samples from these patients is typically observed (Maxwell et al., 1997). 
Diabetic children show significant reduction in GSH and GSPx in erythrocytes, as well as in 

plasma -tocopherol and -carotene levels (Dominguez et al., 1998). Incubation of rat 
(Rabinovitch et al., 1992) and human (Rabinovitch et al., 1996) islet cells with a cytotoxic 

combination of cytokines (IL-1, TNF and IFN) has been reported as an inducing factor 
for lipid peroxidation (also known as lipoperoxidation). When individually administered, 
however, the same cytokines have been shown to inhibit insulin release without any 
increase in lipid peroxidation or cytodestructive effects in rat islets (Sumoski et al., 1989). 
Taken together, these findings suggest that cytokine-induced inhibition of insulin release 
may not be oxygen free radical-mediated, whereas the cytodestructive effects of cytokines 

on -cells do appear to involve free radical-mediated events that induce the formation of 
toxic derivatives within the islets of Langerhans (Suarez-Pinz et al., 1996). This strongly 

suggests that type 1 cytokines interfere in -cell metabolism at some point that is intimately 

related to insulin secretion. But where does reside this extreme sensitivity of -cells to 
cytokine signals? The expression of iNOS, necessary for the synthesis of NO during insulin 
secretion, may provide an explanation. 
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NO has incontestably been shown to be a physiological regulator of insulin secretion in 

-cells, in an elegant experimental protocol designed by Prof. Anne Marie Salapatek’s group 
in Canada and reported in a seminal paper (Smukler et al., 2002). They have also reported 
that endogenous NO production can be stimulated by glucose, and that this stimulation can 
be blocked by NOS inhibition, whereas scavenging of NO specifically blocks insulin release 
stimulated by physiological intracellular concentrations of NO-donors (2 mM), but has no 
effect on the release stimulated by elevated K+. It has also been reported that NO donation 

did not elicit a -cell intracellular Ca2+ ([Ca2+]i) response alone, but was able to potentiate a 
glucose-induced [Ca2+]i response. Since NO is a strong heme-reactant, it partially inhibits the 
mitochondrial respiratory chain by binding to cytochrome c and/or cytochrome oxidase. As 
a consequence, the mitochondrial membrane potential decreases and Ca2+ leaves the 
mitochondria. This is followed by restoration of the mitochondrial membrane potential and 
Ca2+ reuptake by mitochondria (Spinas, 1999). Therefore, overproduction of NO related to 
inflammatory stimuli may be related to cellular dysfunction but not normal levels of NO. As 
previously argued (Smukler et al., 2002), the precise level of NO is crucial in determining its 
resultant effect, with low levels being involved in physiological signalling and higher levels 
becoming cytotoxic (Moncada et al., 1991; Beck et al., 1999). Hence, the supraphysiological 
elevation of L-arginine, or the application of exogenous NO donors under the condition of 
already elevated NO, may result in excessive NO production, yielding cytotoxic effects 
(Smukler et al., 2002).  

3. Nuclear factor B-dependent L-arginine metabolism in -cells 

Pancreatic -cells have to constantly express NF-B-regulated iNOS in order to achieve 

appropriate amounts of NO produced from L-arginine. However, inflammatory cytokines, 

such as IL-1 and TNF-, activate NF-B in rodent and human islet cells (Eizirik & 

Mandrup-Poulsen, 2001). Contrarily, prevention of NF-B activation protects pancreatic 

-cells against cytokine-induced apoptosis (Giannoukakis et al., 2000; Heimberg et al., 2001). 

It is impressive that about 70 NF-B–dependent genes have been currently identified in -

cells, including genes encoding for various inflammatory cytokines and iNOS (Darville & 

Eizirik, 1998). Remarkably, the expression of ca. 50% of the -cell genes that may be 

modified after cytokine exposure is secondary to iNOS-mediated NO formation (Kutlu et 

al., 2003). It is of note that treatment of human, as well as rodent -cells with purified IL-1 

alone is not sufficient to induce apoptosis, but if IL-1 is combined with interferon- (IFN), 
-cells undergo apoptosis after few days in culture (Eizirik & Mandrup-Pouls, 2001). This 

suggests that an intracellular IFN signal must synergise with IL-1 signalling pathways in 

order to trigger -cell apoptosis. IFN binds to cell surface receptors and activates the Janus 

tyrosine kinases JAK1 and JAK2. These kinases phosphorylate and activate their 

downstream transcription factor STAT-1 (for signal transducers and activators of 

transcription), which dimerises and translocates to the nucleus where binding to -activated 

sites on target genes occurs (Eizirik & Mandrup-Pouls, 2001).  STAT-1 mediates the 

potentiating effect of IFN on IL-1-induced iNOS expression (Darville & Eizirik, 1998). 

Because excessive activation of JAK/STAT signalling may lead to cell death, STAT 

transcriptional activity is regulated by multiple negative feedback mechanisms. These 

include dephosphorylation of JAK and cytokine receptors by cytoplasmic protein-tyrosine 

phosphatases SHPs (for Src homology 2 domain phosphatases), and inhibition of JAK 
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enzymic activities by the suppressors of cytokine signalling (SOCS) family. Upregulation of 

either SOCS-1 or SOCS-3 protects -cells against cytokine-induced cell death in vitro and in 

vivo (Karlsen et al., 2001; Flodstrom et al., 2003). SOCS-3 also protects insulin-producing 

cells against IL-1–mediated apoptosis via NF-B inhibition (Karlsen et al., 2004). Evidence 

indicates that the fate of -cells, after cytokine exposure, depends on the duration and 

severity of perturbation of key -cell gene networks.  

Besides its activation by cytokines, NF-B is also a potential target for reactive 

oxygen/nitrogen species (ROS/RNS). It is noteworthy that NF-B was the first redox-
sensitive eukaryotic transcription factor shown to respond directly to oxidative stress in 
many types of cells (Dröge, 2002), while its activation leads to the expression of at least a 
hundred of inducible proteins directly involved in inflammation, such as cyclooxygenase-2 

(COX-2), iNOS, TNF and IL-1 (Moynagh, 2005). Therefore, NF-B is, at the same time, 
both a target and an inducer of inflammation and inflammation-induced oxidative stress. In 

resting (unstimulated) cells, NF-B dimeric complexes are predominantly found in the 

cytosol where they are associated with members of the inhibitory IB family (Moynagh, 

2005), so that NF-B gene products are entirely inducible proteins whose activation is 

dictated by specific stimuli that activate IB kinase (IKK) complexes. These stimuli include 
high intracellular GSSG levels and oxidative stress per se (Dröge, 2002). IKKs, in turn, 

phosphorylate IB proteins directing them to proteasome-mediated degradation, which sets 

NF-B dimers free to bind to DNA in the nucleus.  

NF-B activation is responsible for both initiation and amplification of immune and 

inflammatory responses in all cells. Actually, NF-B activation is sine qua non for the control 
of immune and inflammatory responses (Baldwin, 1996; Nakamura et al., 1997; Winyard et 
al., 1997), and since inflammatory factors, such as pro-inflammatory cytokines, chemokines, 

adhesion molecules, colony-stimulating factors and inflammatory enzymes, are NF-B-

dependent gene products, dysregulation or aberrant activation of NF-B could initiate 

inappropriate autoimmune and inflammatory responses. Conversely, inhibition of NF-B 
activation has been argued as a potential therapeutic approach in several immune and 
inflammatory-related diseases (Chen et al., 1999). This is why cyclopentenone 

prostaglandins (cp-PGs), which are powerful inhibitors of NF-B activation (Rossi et al., 
2000), are now considered to be the physiological mediators of the “resolution of 

inflammation” (Piva et al., 2005), whereas cp-PG-based pharmacological approaches, e.g. 
LipoCardium technology, which is a liposome contained cp-PG-based formulation 
specifically directed towards atherosclerotic lesions in arterial walls (Homem de Bittencourt 
et al., 2007; Gutierrez et al., 2008) have proved to be powerful anti-atherosclerotic strategies 
(Piva et al., 2005; Ianaro et al., 2003; Homem de Bittencourt Jr., 2007).  
Finally, considering that all the known forms of inflammation finish with the formation of 
naturally-occurring anti-inflammatory agents (e.g. cp-PGs, IL-10), an important question 

remains as to how does -cell not resolve inflammation by triggering such responses? A 
fault in the expression of the anti-inflammatory heat shock proteins may give a clue to this 
question. 

4. Heat shock protein pathways 

Heat shock proteins (HSPs) have been found to play a fundamental role in the recovery 
from multiple stress conditions and to offer protection from subsequent insults (De Maio, 
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2011). The function of HSPs during stress goes beyond their intracellular localization and 
chaperone role as they have been detected outside cells activating signaling pathways. 
Extracellular HSPs are likely to act as indicators of the stress conditions, priming other cells, 
particularly of the immune system, to avoid the propagation of the insult (see De Maio, 2011 
for review). As we shall present below, the delicate balance between the “danger signalling” 

extracellular HSPs and its intracellular counterparts may dictate pancreatic -cell response 
to cytokines and, eventually, the precipitation of diabetes. By regulating L-arginine 
consumption through iNOS, and, consequently, NO generation, intracellular HSP response 
(or its deficiency) may unravel unpredicted facets of both type 1 and type 2 diabetes.  
Heat shock proteins (HSPs) are a set of highly conserved polypeptides in both eukaryotic 
and prokaryotic organisms. They are categorised in families according to their molecular 
sises and include HSP110, HSP100, HSP90, HSP70, HSP60 HSP30 and HSP10 subclasses. By 
far, the most studied (due to its evident high expression in mammalian cells under stress 
conditions) and conserved is the 70-kDa family (HSP70), which comprises a number of 
related proteins whose molecular weights range from 66 to 78 kDa. HSP70 isoforms are 
encoded by a multigene family consisting presently of, at least, 13 distinct genes in humans 
so far studied (Kampinga et al., 2009; Henderson, 2010). Human HSP70 is 73% identical to 
Drosophila HSP70 and 47% identical to E. coli DnaK (the E. coli orthologue of eukaryotic 
HSP70) while, surprisingly, the nucleotide sequences of the human and Drosophila genes are 
72% identical and human and E. coli genes are 50% identical (Hunt & Morimoto, 1985). 
HSP70s function as molecular chaperones that facilitate protein transport, prevent protein 
aggregation during folding, and protect newly synthesised polypeptide chains against 
misfolding and protein denaturation (Henderson, 2010). While the constitutive form is 
expressed in a wide variety of cell types at basal levels (being only moderately inducible), 
the so-called inducible HSP70 forms (which are barely detectable under non-stressful 
conditions) could be promptly synthesised under a condition of “homeostatic stress”, this 
being any “homeostasis threatening” condition, such as heat, glucose deprivation, lack of 
growth factors and so forth. Traditionally, research groups indistinctly use HSP70 as a 
unified term for both inducible (72 kDa, HSP72 encoded by the HSPA1A human gene) and 
constitutive (73 kDa, HSP73 or HSC70, for heat shock cognate protein, encoded by the 
human HSPA8 gene whose product differs from HSPA1A protein by only 2 amino acids, 
Kampinga et al., 2009; Tavaria et al., 1996; Arya et al., 2007; Tavaria et al., 1995). However, 
HSP70 is the preferable form to be used only when one refers to the inducible HSP72 protein 
encoded by HSPA1A gene (Heck et al., 2011). 
Many different events can induce HSP expression, among them are environmental, 
pathological and physiological factors, such as heavy metal exposure, UV radiation, amino 
acid analogues, bacterial or viral infection, inflammation, cyclo-oxygenase inhibitors 
(including acetylsalicylic acid), oxidative stress, cytostatic drugs, growth factors, cell 
differentiation and tissue development, which strongly activate the main eukaryotic heat 
shock transcription factor, HSF-1, leading to HSP70 expression (Lindquist & Craig, 1988). 
Physical exercise, even at single low-intensity bouts (Silveira et al., 2007), is able to induce 
HSP70 expression in different cell types leading to augmented plasma HSP70 concentrations 
(see Heck et al., 2011 for review). In our hands, rats submitted to swimming sessions of as 
short as 20 min (2-4% body weight overload, a mild exercise) demonstrate increased HSP72 
(mRNA and protein) in circulating monocytes and lymphocytes and in lymph node 
lymphocytes and peritoneal macrophages, which is paralleled by a rise in plasma HSP70 
levels immediately after the exercise (C.M. Schöler, S.P. Scomazzon, P. Renck Nunes, T.G. 
Heck, P.I. Homem de Bittencourt Jr., unpublished work). 
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4.1 Intracellular hsp70 
Aside the now classical molecular chaperone action, the most remarkable intracellular effect 

of HSP70s is the inhibition of NF-B activation, which has profound implications for 

immunity, inflammation, cell survival and apoptosis. Indeed, HSP70 blocks NF-B 

activation at different levels, by inhibiting the phosphorylation of the inhibitor of B (IBs), 

by directly binding to IB kinase- (IKK) thus inhibiting tumour necrosis factor- (TNF)-
induced apoptosis (Ran et al., 2004). In fact, the supposition that HSP70 might act 

intracellularly as a suppressor of NF-B pathways has been raised after a number of 
discoveries in which HSP70 was intentionally induced, such as the suppression of astroglial 

iNOS expression paralleled by decreased NF-B activation (Feinstein et al., 1996)  and the 

protection of rat hepatocytes from TNF-induced apoptosis by treating cells with the 
NO-donor S-Nitroso-N-acetylpenicillamine (SNAP), which reacts with intracellular 
glutathione (GSH) molecules generating S-nitrosoglutathione (SNOG) that induces HSP70, 
and, consequently, HSP70 expression (Kim et al., 1997).  
HSP70 confers protection against sepsis-related circulatory mortality via the inhibition of 

iNOS gene expression in the rostral ventrolateral medulla through the prevention of NF-B 

activation, inhibition of IB kinase activation and consequent inhibition of IB degradation 
(Chan et al., 2004). This is corroborated by the finding that HSP72 assembles with 

hepatocyte NF-B/IB complex in the cytosol thus impeding further transcription of NF-B-

depending TNF- and NOS-2 genes that would worsen sepsis in rats (Chen et al., 2005). This 
may also be unequivocally demonstrated by treating cells or tissues with HSP70 antisense 

oligonucleotides that completely reverses the beneficial NF-B-inhibiting effect of heat 
shock and inducible HSP70 expression (see, for instance, Kim et al., 1997; Chan et al., 2004). 
Hence, HSP70 is anti-inflammatory per se, when intracellularly located, which also explains 
why cyclopentenone prostaglandins (cp-PGs) are powerful anti-inflammatory autacoids 
(Rossi et al., 2000; Homem de Bittencourt & Curi, 2001; Beere, 2004; Gutierrez et al., 2008). 
Another striking effect of HSP70 is the inhibition of apoptosis, which occurs via many 

intracellular downstream pathways (e.g. JNK, NF-B and Akt) that are both directly and 
indirectly blocked by HSP70, besides the inhibition of Bcl-2 release from mitochondria 
(Beere, 2004). Therefore, intracellularly activated HSP70s are cytoprotective and anti-

inflammatory by avoiding protein denaturation and excessive NF-B activation which may 
be damaging to the cells. 

It is strikingly noteworthy that L-glutamine attenuates TNF- release and enhances HSP72 
expression in human peripheral blood mononuclear cells (Wischmeyer et al., 2003). In fact, 
L-glutamine induces HSP70 expression via O-glycosylation and phosphorylation of HSF-1 
and Sp1 (Singleton, K.D. & Wischmeyer, P.E., 2008) in a process that is mediated, at least 
partially, by the increase in the flux through the hexosamine biosynthetic pathway (Hamiel 
et al., 2009). Also, it has been shown that a single dose of L-glutamine relieve renal 
ischaemia-reperfusion injury in rats in 24 h by a mechanism associated with enhanced 
HSP70 expression (Zhang et al., 2009). 

4.2 Extracellular hsp70 
HSP70s may also be found in the circulation and its presence is associated to oxidative 
stress. While healthy people usually have low plasma levels of HSP70, the association of 
increased blood concentrations of such proteins with illness and disease progression has 
been hypothesised. In this way, oxidative stress, inflammation, cardiovascular disorders and 
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pulmonary fibrosis have been directly correlated with HSP70 concentration in the 
bloodstream (Ogawa et al., 2008). On the other hand, L-glutamine supplementation, which 
rises circulating HSP70 levels in critically ill patients, is associated with lower hospital 
treatment period (Ziegler et al., 2005). Therefore, these studies may suggest that elevation of 
HSP70 levels could be an important immunoinflammatory response against physiological 
disorders or disease.  
Inasmuch as HSP70s exist in the extracellular space, molecular interactions with cell surface 

receptors may occur and signalling pathways could be triggered in many cell types, whereas 

there are a variety of receptors to HSP70 binding, amplifying the possible targets to these 

extracellular molecules (Calderwood et al., 2007a, 2007b). However, the function of 

circulating HSP70 is incompletely understood yet. HSP70s are released towards the 

extracellular space by special mechanisms that include pumping across cell membranes 

through the highly conserved ABC cassette transport proteins. Recent studies have 

demonstrated that exosomes provide the major pathway for the vesicular secretory release 

of HSP70s and that heat stress strikingly enhances the amount of HSP70 secreted per vesicle, 

but does not influence the efficiency of stress-induced rate of HSP70 release and the number 

of exosomes neither (Sun et al., 2005; Lancaster & Febbraio, 2005; Multhoff, 2007). A similar 

profile was observed in our hands (T.G. Heck; P. Renck Nunes; S.P. Scomazzon & P.I. 

Homem de Bittencourt Jr., manuscript in preparation), in which lymph node lymphocytes 

from exercised rats submitted to a further (other than the exercise bouts) challenge (heat 

shock) presented an HSP70 accumulation into the culture medium that is dependent on 

previous exercise load. Apparently, systemic extracellular HSP70 (eHSP70) could arise from 

many tissues and different cell types and this may involve distinct mechanisms of release 

(including necrosis) and a large variety of inducing factors (Mambula et al., 2007). Finally, 

HSP72 is clearly the major component of the secreted eHSP70 found in the circulation, 

although recent evidence suggests that other forms may also be released into the blood, as 

recently pointed out by De Maio (2011). eHSP70 has been shown to bind to type 2 and 4 toll-

like receptors (TLR2 and TLR4) on the surface of antigen-presenting cells (APCs) similarly to 

lipopolysaccharides (LPS), inducing the production of the pro-inflammatory cytokines IL-1 

and TNF-, as well as NO (a product with prominent anti-microbial activity), in an NF-B-

dependent fashion (Ao et al., 2009; Asea, 2003; Asea, 2008).  

Taken together, the above findings suggest that the body must attain a precise equilibrium 

between pro-inflammatory eHSP70 and anti-inflammatory intracellular HSP70 production 

in order to avoid chronic non-resolved inflammations, such as those observed in sepsis and 

during the onset of type 1 diabetes. However, why such a balance is not achieved in these 

illnesses is a matter of intense study. 

4.3 Heat shock proteins and exercise  
As recently reviewed (Heck et al., 2011), physical exercise and its inherent physiological 

alterations induce HSP70 expression in many tissues and cell types, not only in the muscle 

cells. The breakdown of cell homeostasis produced by modifications in temperature, pH, ion 

concentrations, oxygen partial pressure, glycogen/glucose availability, and ATP depletion 

are among the factors that activate HSP70 synthesis during exercise (Noble et al., 2008). Rise 

in core and muscle temperature during exercise seems an obvious way to induce HSP70. 

However, while skeletal muscle sustains HSP70 expression in the absence of heat stimulus, 
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the heart is not able to do the same, thus suggesting that the mechanisms of HSP70 protein 

synthesis are specifically driven in each tissue (Harris & Starnes, 2001; Skidmore et al., 2005; 

Morton et al., 2007; Staib et al., 2007) and that augmented temperature is insufficient to elicit 

HSP70 synthesis during exercise. Moreover, the susceptibility of tissues to be stressed by the 

environmental changes elicited by exercise varies enormously and other protective 

pathways may be activated in the heart, as we have shown for MRP/GS-X pump ATPases 

whose expression seems to prevent HSP70 expression in the cardiac muscle after exercise 

bouts (Krause et al., 2007).  In spite of free radicals may be produced under normal 

conditions, a burst in reactive oxygen species does occur during exercise (Fisher-Wellman & 

Bloomer, 2009). Besides enzymatic and non-enzymatic antioxidant apparatus, studies in 

both animal models and humans implicate HSP70s as a complementary protection against 

oxidative damage (Smolka et al., 2000; Silmar et al., 2007; Hamilton et al., 2003), particularly 

because HSP70s may recover oxidatively denatured proteins. After an acute exercise 

session, skeletal muscle (Hernando & Manso, 1997),  cardiac muscle (Locke et al., 1995) and 

other tissues, such as the liver (Gonzalez & Manso, 2004; Kregel & Moseley, 1996), have 

shown a state of oxidative stress, concomitantly to high concentrations of intracellular 

HSP70 (Salo et al., 1991). Even though oxidative stress is a strong factor to induce HSP70s in 

response to exercise, free radical production is not the only pathway involved in this 

process, since sexual hormones and adrenergic stimuli may modulate HSP70 response 

(Parro & Noble, 1999; Paroo et al., 2002a, 2002b; Paroo et al., 1999) and circulating 

monocytes from acutely exercised rats do not show appreciable changes in erythrocyte 

glutathione disulphide (GSSG) to glutathione (GSH) ratio (an index of intracellular redox 

status) and plasma thiobarbituric acid-reactive substances (TBARS), even in a state of high-

profile synthesis of hydrogen peroxide (Silveira et al., 2007). 

More recently, however, it has been demonstrated the presence of HSP70s in the circulation 

in response to exercise (Walsh et al., 2001). Since exercise is able to induce high 

concentrations of HSP70s in both muscle and plasma, the most obvious hypothesis was, 

primarily, that skeletal muscle should be the releaser of HSP70 during exercise. However, 

further studies have revealed that this is not the case, at all. Postural muscles express high 

levels of HSP70s under basal conditions, which has led to the belief in a preventive role for 

these proteins against muscle damage through the stabilization of ionic channels (Tupling et 

al., 2007), as well as myotube development (Kayani et al., 2008). HSP70s were also believed 

to be an important way to preserve low twitch (oxidative) muscle phenotype after frequent 

activation, as in physical training (Kelly et al., 1996; Murlasits et al., 2006). Preservation of 

intracellular muscular function during different exercises, venous-arterial HSP70 differences 

in different territories (Febbraio et al., 2002a), and the lack of evidence supporting the 

proposition that the muscle could be the major source of circulatory eHSP70 precluded the 

‘muscle hypothesis’ and suggested that other tissues/cells should be responsible for the 

increase of eHSP70 in the circulation. Once HSP70 protein release from the muscle to the 

extracellular fluid could eventually happen by lysis process, and considering that the lysis of 

muscle fibre occurs only under severe cellular stress condition, the presence of eHSP70 

during moderate exercise, as we normally employ, was found to be unfeasible. Though it 

had been shown that both the intensity and duration of exercise have effects in plasma 

eHSP70 (Fehrenbach et al., 2005) and muscle (Milne & Noble, 2002) HSP70 immunocontents, 

this rise in circulating levels of eHSP70 precedes, however, any gene or protein expression 
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of HSP70 in skeletal muscle (Febbraio et al., 2002b), which is another strong argument 

against the ‘muscle hypothesis’. As stated above, other tissues synthesise HSP70s during 

physiological challenges to the homeostasis, as in an acute physical exercise bout. In this 

way, after treadmill exercise protocol, the rat liver has been found to enhance the expression 

of HSP70s (Gonzalez & Manso, 2004). Moreover, and finally, in a human study featuring 

leg and hepatosplanchnic venous-arterial eHSP70 difference in response to exercise it was 

unequivocally demonstrated that the contracting muscle does not contribute to eHSP70 

circulating levels, while hepatosplanchnic viscera release eHSP70 from undetectable levels 

at rest to 5.2 pg/min after 120 min of exercise (Febbraio et al., 2002a). Additional studies 

have shown that oral glucose administration may exclusively reduce HSP70 release from 

the liver without any effect on muscle glycogen content or intracellular expression of 

HSP70 (Febbraio et al., 2004). Taken together, these results suggest that other cells may 

release eHSP70 during exercise, as verified during an experiment that analysed cerebral 

venous-arterial HSP70 difference (Lancaster et al., 2004). Although the liver seems to 

participate in this process, the nature of eHSP70-releasing cell(s) during exercise remains 

to be established.  

4.4 HSP70 and glucose/insulin status 
Intracellular HSP70 expression produces a clear anti-inflammatory effect by knocking down 

the expression of pro-inflammatory NF-B-dependent pathways. However, the activation of 
HSP70 pathways produces a much more delicate effect. Accordingly, in obese insulin-
resistant mice, chronic heat shock treatment has been shown to dramatically reduce insulin 
resistance by HSP72-specific prevention of c-Jun N-terminal Kinase (JNK) phsophorylation, 
an effect which is also observed in high-fat fed HSP72+/+ transgenic mice (Chung et al., 
2008). Also, elevated expression of HSP70 has also been found in circulating mononuclear 
cells from type 2 diabetic patients (Yabunaka et al., 1995), which, as discussed above, is a 
immunoinflammatory disease as well. On the other hand, in rat islets, L-glutamine, which is 
an activator of HSF-1, was shown to attenuate ischaemic injury through the induction of 

HSP70 (Jang et al., 2008). Moreover, the well known inhibitory effect of IL-1 and TNF- 
(alone or combined) on insulin secretion may be completely prevented by a 1-h heat shock 
(42°C) pre-treatment of both human and rat islets (Scarim et al., 1998). These authors have 
also shown that the protective effects of heat shock on islet metabolic function are associated 

with the inhibition of IL-1- and TNF-stimulated NF-B nuclear localization and the 
consequent iNOS expression. Conversely, NO was found to be one of the triggers of HSP70 
expression in human islets (Scarim et al., 1998), which is similar to that previously 
encountered by Kim et al. (1997), who described a protective effect of NO (via the formation 

of SNOG that induces HSP70) in rat hepatocytes against TNF-induced apoptosis. 
Moreover, J-type cyclopentenone prostaglandins (cp-PGs), which are the most powerful 
anti-inflammatory substances ever known (see Gutierrez et al., 2008 for review) and natural 

ligands of peroxisome-proliferator activated receptor- (PPAR-; Forman et al., 1995; 

Kliewer et al., 1995), are the strongest inducers of HSP70 expression and consequent NF-B 
blockade, a pattern that is shared with synthetic antidiabetic thiazolidinediones (TZDs), 
such as rosiglitazone, pioglitazone, troglitazone, and ciglitazone (see Zingarelli & Cook, 
2005, for review). 
The above observations point out again to the importance of poised L-arginine-dependent 

NO production by -cells in order to achieve an optimum of HSP70 expression, which may, 

www.intechopen.com



 
A Novel L-Arginine/L-Glutamine Coupling Hypothesis: Implications for Type 1 Diabetes 

 

253 

in turn, allow iNOS expression (needed to NO-assisted insulin secretion) but not at 

exaggerated ratios that culminate with -cell death and failure in insulin secretion. In fact, 
physical exercise, which may also present an anti-inflammatory effect by virtue of its ability to 

induce the expression of HSP70, is inversely associated with L-arginine utilisation by -cell 
iNOS (Atalay et al., 2004). Furthermore, a dramatic scenario does exist in that the susceptibility 

to oxidative damage to -cells in type 1 diabetes is associated to the impairment of 
HSP70-induced cytoprotection, while endurance training may offset some of the adverse 
effects of diabetes by upregulating tissue HSP70 expression (Atalay et al., 2004). Indeed, in 
many, if not all, severe inflammatory manifestations of acute nature, such as sepsis or insulitis, 
the stage of HSP70-based “resolution of inflammation” is simply not seen at all. For instance, 
in the serum of septic patients with highly oxidative profile (whose prognosis is death), it is 
observed 30-fold increase in serum HSP70 (eHSP70) compared with control subjects (Gelain et 
al., 2011), whereas the amount of intracellular HSP70 expressed in the cells of such subjects is, 
as a rule, lower that that expected. Corroborating this proposition, the expression of HSP70 by 
pancreatic islets from diabetes-prone BB rats has been found to be lower than that in diabetic-
resistant LEW rats of same age and, in the diabetes-prone BB rats, HSP70 expression has 
shown to be much lower in young as compared to adult animals (Wachlin et al., 2002). Since 
intracellular HSP70 functions as a potent anti-inflammatory cellular tool due to the 

impairment over NF-B downstream pathways, a deficient HSP70 may threaten -cell survival 
(see Hooper & Hooper, 2005, for review).  
Results from our group have also shown that, besides a reduction in peripheral insulin 
resistance, heat shock treatment (which also enhances HSP70 export towards the plasma) may 
impair insulin action under hypoglycaemic conditions in the rat model (M.S. Ludwig.; V.C. 
Mingueti; P. Renck Nunes; T.G. Heck; R.B. Bazotte & Homem de Bittencourt, P.I. Jr., 
manuscript in preparation) so that HSP70 balance seems to be crucial for glucose-insulin 
homeostasis. Now, we are currently evaluating the possibility that exercise may stimulate Th2-

based immune response and protect -cells from pro-inflammatory cytokine pathways 
through HSP70 induction, which, ultimately, may prevent type 1 diabetes. Since a) 

L-glutamine is a major precursor of L-arginine, which is capital for -cell survival, b) 
L-arginine-dependent moderate NO synthesis induces HSP70 and c) physical exercise is able of 
directly inducing HSP70 and of enhancing L-glutamine production by the skeletal muscle, both 
exercise and/or L-glutamine supplementation are argued as preventive agents against the 
installation of type 1 diabetes by re-establishing the HSP70 equilibrium between the intra and 
extracellular spaces, as previously hypothesised (Krause & Homem de Bittencourt, 2008). 

5. Participation of L-arginine/L-glutamine coupling in diabetes 

From the above discussion, it seems clear that the development of diabetes is not simply a 
question of cytokine imbalance culminating in a redox disruption and consequent oxidative 
stress that disrupts or kills -cells. This, in fact, raises another question: is beta cell 
susceptibility to stress solely a question of compromised antioxidant defence? If this were 
the case, it would appear preposterous that such a sophisticated cell remains prone to 
endogenously-generated NO-mediated self-destruction. The intricate metabolism of 
L-arginine in -cells may unravel some important points in this regard. 
In -cells, pro-inflammatory cytokines induce the production of NO, synthesised from 
L-arginine, via a reaction catalysed by iNOS, whose functionality depends on NF-B-driven 
gene transcription and de novo enzyme synthesis. iNOS also utilises NADPH and O2 as co-
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substrates (Fig. 1A) and, physiologically, L-arginine is the limiting substrate for NO 
production. In addition to this, pancreatic -cells express another L-arginine-metabolising 
enzyme, i.e. L-arginase (L-arginine amidinohydrolase, EC 3.5.3.1), which allows for the 
completion of urea production through the formation of L-ornithine and urea from 
L-arginine (Cunningham et al., 1997). Physiologic levels of L-arginase gene expression and 
activity have been measured in rat -cells and the insulin-secreting cell line RINm5F 
(Cunningham et al., 1997; Malaisse et al., 1989; Cardozo et al., 2001; Rieneck et el., 2000). 
-Cells express both the cytosolic (L-arginase I) and the mitochondrial (L-arginase II) 
isoforms of the enzyme. Therefore, under certain circumstances, a true competition may 
occur in that the activity of iNOS relative to L-arginase dictates either NO or urea 
production in the pancreas (compare Fig. 1A and 1B). Consequently, L-arginase may impair 
NO production by limiting the availability of L-arginine for iNOS catalysis (Wu & Morris, 
1998; Boucher et al., 1999; Mori & Gotoh, 2000). This notion is supported by the finding that 
inhibition of L-arginase results in enhanced NO synthesis in cytokine-activated cells (Chang 
et al., 1998; Tenu et al., 1999). 
It has been demonstrated that cytokine-elicited co-induction of both NO (iNOS) and urea 
(argininosuccinate synthetase and argininosuccinate lyase) metabolic pathways occurs in 
many cell types (Nussler et al., 1994; Hattori et al., 1994; Nagasaki et al., 1996), including 
-cells (Flodstrom et al., 1995), in vitro as well as in vivo. L-Arginase activity may be 
increased in peritoneal macrophages after exposure to LPS (Currie, 1978), while wound and 
peritoneal macrophages convert L-arginine to L-citrulline and L-ornithine at comparable 
rates, indicating that both iNOS and L-arginase pathways are functional (Granger et al., 
1990). In clonal -cells, IL-1 increases L-arginase activity with concomitant increase in NO 
production (Cunningham et al., 1997), which suggests a kind of coordinated regulation of 
L-arginase and iNOS in these cells. 
There is also evidence for a reciprocal regulation of NOS and L-arginase during immune 
responses via the antagonistic effects of cytokines released from Th1 and Th2 lymphocytes. 
While L-arginase activity may be induced by the “anti-inflammatory” Th2 cytokines IL-4, 
IL-6, IL-10, and IL-13 (Modolell et al., 1995; Waddington et al., 1998; Munder et al., 1999; Wei 
et al., 2000), the Th1-derived “pro-inflammatory” cytokine IFN increases iNOS expression 
and activity, both alone and in synergy with other pro-inflammatory cytokines, such as 
IL-1 and TNF (Gill et al., 1996). Reciprocal effects of Th1- and Th2-derived cytokines on 
L-arginase and iNOS activities have also been shown by the treatment of murine 
macrophages with cytokines (Modolell et al., 1995; Corraliza et al., 1995), and by co-
culturing murine macrophages with Th1 and Th2 T-cell clones (Munder et al., 1998). In 
mouse bone marrow-derived macrophages, iNOS and L-arginase activities are regulated 
reciprocally by Th1 and Th2 cytokines, a strategy that guarantees a precise and efficient 
production of NO (Modolell et al., 1995). 
Because of the above statements, a Th1/Th2 lymphocyte dichotomy has been proposed to 
play a central role in the pathogenesis of type 1 diabetes (Rabinovitch & Suarez-Pinzon, 
1998), whereas evidence suggests that the progression of the disease correlates with a 
Th1-type immune response (Currie, 1978; Granger et al., 1990; Simmons et al., 1996). 
Increased generation of NO following cytokine-elicited iNOS induction during insulitis may 
contribute to -cell destruction (Modolell et al., 1995; Morris et al., 1998). Therefore, 
competition between L-arginase and iNOS may be particularly important in protecting 
-cells against the establishment of type 1 diabetes. 

That macrophages exposed to LPS and IFN increase iNOS expression and NO production 

is well known. A novel clue for the understanding of NO-mediated -cell damage is that 
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NG-hydroxy-L-arginine (L-NOHA), an intermediate in the biosynthesis of NO, is a potent 
competitive inhibitor of L-arginase I (Boucher et al., 1994; Daghigh et al., 1994). Indeed, 
substantial amounts of this metabolite are released by LPS-treated rat alveolar macrophages 
(Hecker et al., 1995), while inhibition of L-arginase by L-NOHA may ensure sufficient 
availability of L-arginine for high-output production of NO in activated cells. L-Citrulline, 
the co-product of iNOS catalysis, and S-nitrosoglutathione (SNOG), an adduct produced by 
the reaction of NO with GSH, are also inhibitors of L-arginase in many cell types (Daghigh et 

al., 1994; Knowles & Moncada, 1994), including -cells (Cunningham et al., 1997). Hence, 
intermediates of NO synthesis, as well as NO itself, precisely coordinate a maximum of flux 
through iNOS in insulin-producing pancreatic cells (Fig. 1). Conversely, dexamethasone and 
dibutyryl cAMP block both iNOS and L-arginase expression, which is paralleled by a strong 
decrease of NO production (Gotoh & Mori, 1999). Additionally, macrophages treated with 

LPS and IFN undergo NO-dependent apoptosis, which may be prevented by L-arginase 
DNA plasmid transfection (Gotoh & Mori, 1999). In such cells, L-arginase I and II seem to 
play a role in determining the route(s) for NO-elicited outcomes. 
Competition between L-arginase and iNOS has also been found in activated murine 
macrophages incubated with another L-arginase inhibitor, nor-L-NOHA (Tenu et al., 1999). 
Contrarily, L-arginase induction by the type 2 cytokines IL-4 or IL-13 has been shown to 
inhibit macrophage NO synthesis due to increased L-arginine utilisation by L-arginase 
(Rutschman et al., 2001). Similar results have been obtained by using different cell types 

(Gotoh & Mori, 1999; Hecker et al., 1995). In -cells, both L-arginase I, the major isoform 
expressed in rodent pancreas, and L-arginase II, the main human isoform, seem to 
reciprocally regulate iNOS-dependent NO production under physiological L-arginine 
concentrations (Wu & Morris, 1998; Stickings et al., 2002; Castillo et al., 1993), which 
suggests that islet L-arginase may be able to compete with iNOS in vivo, where L-arginine 
ranges at non-saturating concentrations for both enzymes. This fact may be of relevance for 

-cells during Th1-driven insulitis, since L-arginine concentrations are likely to be reduced at 
sites of inflammation due to the release of soluble L-arginase from infiltrating macrophages 
(Albina et al., 1990). Corroborating this proposition is the fact that IL-1-induction of NO 

synthesis in RINm5F insulin secreting -like cells is accompanied by a reduced flux of 
L-arginine through L-arginase, an effect that appears to be mediated by L-NOHA 
(Cunningham et al., 1997). Hence, it is likely that, following immune cell-elicited NO 
production via iNOS, L-NOHA inhibits islet L-arginase activity to some degree in vivo, 
which may be strongly exacerbated by the pro-inflammatory cytokine IL-1 that inhibits 

L-arginase expression in -cells (Cardozo et al., 2001; Rieneck et al., 2000). In fact, a 
remarkable reduction in L-arginase expression has been recently observed during insulitis in 
the NOD mouse model of type 1 diabetes (Rothe et al., 2002).  
In the -cell, NH4+ may contribute to L-arginine biosynthesis, through the concerted action 
of carbamoyl phosphate synthetase I, ornithine transcarbamoylase, argininosuccinate 
synthetase and argininosuccinate lyase that produce L-arginine (Fig. 1B). L-Glutamate is also 
believed to amplify glucose-induced insulin secretion in a KATP channel-independent way 
(Brennan et al., 2003). However, L-glutamate is, at the same time, an obligatory substrate 
for GSH synthesis, which, in turn, enhances the ATP/ADP ratio by optomising 
mitochondrial function and scavenges ROS/RNS leading to insulin secretion. L-alanine, 
may replenish the -cell L-glutamate pool via an L-alanine aminotransferase-catalysed 

reaction. This explains why L-alanine is cytoprotective to -cells against cytokine-induced 
apoptosis (Cunningham et al., 2005), i.e., under cytokine-stimulated NO production, 
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L-alanine may provide L-glutamate for GSH synthesis thus avoiding oxidative stress and 
NO-induced apoptosis.  

Since, as discussed above, -cells have poor NADPH-dependent GSSG reductase (GSRd) 
activity, necessary to regenerate GSH from GSSG in situations of oxidative stress, and 

NADPH production from the hexose monophosphate shunt is limited because -cell 
glycolytic activity is committed to mitochondrial ATP production during glucose-stimulated 
insulin release, de novo GSH biosynthesis from L-glutamate becomes crucial for insulin 

release and avoidance of -cell death. Hence, it is easy to envisage that any metabolic 
disequilibrium in providing L-arginine for NO-assisted insulin secretion, during 

secretagogue-stimulated insulin release, forces -cell metabolism to utilise 
L-glutamine-derived L-glutamate to synthesise GSH, thus ensuring little L-glutamate can 
undergo oxidative deamination via glutamate dehydrogenase (GDH) in these conditions. 
The kidney is considered to be the physiological producer of L-arginine since it is the only 
organ known to take up L-citrulline released from the metabolism of L-glutamine in the gut 
and release L-arginine into the blood (Fig. 1 and 2), although other tissues strongly express 
argininosuccinate synthetase and lyase but without any net delivery to the circulation 
(Vermeulen  et al., 2007). In fasted humans, the contribution of L-glutamine via L-citrulline to 
the de novo synthesis of L-arginine is about 65% in neonates, where the gut is the major 
source of systemic L-arginine, even though some residual production in the adult gut could 
be accounted for by L-arginine release as well (Vermeulen et al., 2007). A minor part of 
circulating L-arginine may also be provided by the enterocyte metabolism of proline, as 
stated in the Introduction. Consequently, if, by any chance, the flux through the coupled 
L-glutamine/L-arginine pathway between intestine and kidney is reduced or lost, then the 
knock on consequences for NO synthesis are severe (Fig. 1). L-Glutamate, however, is a 

unique source of GSH in -cells, so that a disruption or hypofunctionality of intestinal-renal 
L-glutamine/L-arginine axis, would promptly decrease GSH synthesis thus reducing insulin 

release, leading to oxidative stress and -cell death. On the other hand, L-glutamine which is 
a major and immediate L-glutamate precursor, is also a primary nutrient for the 
maintenance of immune cell function (Curi et al., 1999; Newsholme et al., 2003; Pithon-Curi 
et al., 2004). Hence, we believe that an immune response triggered by an immune or 
chemical challenge in a redox-sensitive subject (in which the expression/activity of 
antioxidant and GSH enzymes is low) might decrease the availability of L-glutamine for 

GSH generation in -cells, leading to oxidative stress (Fig. 1B). Analogously, it seems likely 
that other situations, in which the circulating L-glutamine pool is severely endangered (Curi 
et al., 1999; Newsholme et al., 1987; Lagranha et al., 2008), such as in undernourishment, 
strenuous-exercise or cancer cachexia-associated muscle loss, chronic inflammatory diseases 
(including obesity), severe metabolic acidosis, major burns, polytrauma and bacteremia, 

should result in -cell dysfunction. 
L-Glutamine deficiency can occur during periods of critical illness. In patients with catabolic 
diseases, plasma and muscle L-glutamine levels are dramatically reduced, which correlates 
with the poor prognosis and high degree of protein catabolism in those patients. For 
instance, in patients with major burn injury, plasma L-glutamine concentration is lower than 
50% of that in normal controls and it remains low for at least 21 days after the injury (Parry-
Billings et al., 1990). Conversely, in LPS-endotoxemic rats, a single dose of L-glutamine, 
which is known to induce anti-inflammation via HSP70 expression (Wischmeyer et al., 2003; 
Singleton, K.D. & Wischmeyer, P.E., 2008; Hamiel et al., 2009; Zhang et al., 2009) has been 
shown to attenuate the release of TNF and IL-1 and to be associated with a significant 
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decrease in mortality due to the attenuation of pro-inflammatory type 1 cytokines 
(Wischmeyer et al., 2001), whereas L-arginine-enriched diet limits plasma and muscle 
L-glutamine depletion in head-injured rats (Moinard et al., 2006). Remarkably, however, 
predominately Th1 (but not Th2) cell responses require the presence of optimal 

concentrations of L-glutamine (Chang et al., 1999). Since -cell death that accompanies the 
onset of type 1 diabetes is an essentially Th1-elicited cytotoxic challenge, it is not 
unreasonable to suppose that the specific recruitment of Th1 cells may greatly enhance 
L-glutamine and L-arginine utilisation leading to an L-arginine deficit, which causes a 
reduction of insulin release and redox imbalance.  
The positive actions of L-arginine on viability, antioxidant status and insulin secretion are 
likely to reflect, in large part, the importance of GSH and the glutathione disulphide (GSSG) 

reductase systems as the main lines of antioxidant defence in -cells which are characterised 

by low levels of CAT and GSPx. In order to adequately provide GSH, -cells may either 
regenerate GSH from GSSG via a GSSG reductase-catalysed reaction or synthesise it, de 

novo, through the concerted action of -glutamylcysteine synthetase (-GCS) and GSH 
synthetase, which are ATP-consuming enzymes (see Fig. 2 for metabolic schemes). 
Regeneration of GSH from GSSG, which utilises NADPH as a co-factor but does not require 
ATP, is metabolically less expensive than the de novo synthesis from the constituent amino 
acids (L-glutamate, L-cysteine and L-glycine). However, unlike the majority of cell types, 

pentose phosphate shunt activity is relatively low in -cells (Dröge, 2002), which is 
exacerbated by the high flux of glucose directed towards ATP production (Spinas, 1999). 

Therefore, -cell NADPH must be obtained from the cytosolic malic enzyme (Fig. 2B), 
capable of converting malate to pyruvate with the concomitant production of NADPH from 
NADP+ (MacDonald, 1995). De novo GSH synthesis, on the other hand, is completely 
dependent on the supply of L-glutamate, not only because this amino acid is a constituent of 
the GSH molecule, but also because L-glutamate acts as an amino acid donor in the synthesis 
of serine, which can subsequently, be converted to L-glycine, via a reaction requiring 
tetrahydrofolate. 

We have found that L-arginine significantly increased glucose consumption in -cells, while 
decreasing lactate formation, regardless the presence or not of pro-inflammatory cytokines, 
(unpublished results, also see Fig. 2B). This may suggest that L-arginine is able to divert 
glucose from mitochondrial CO2 production towards the formation of NADPH via the 
cytosolic malic enzyme so requiring that glucose-derived malate is transported from the 
mitochondrial matrix to the cytosol. Indeed, we believe that, in the presence of L-arginine, 
L-glutamate can be generated from both L-arginine and glucose (via 2-oxoglutarate 
formation and transamination) and is subsequently utilised for GSH synthesis (please, 
compare Fig. 2B and 2C). L-Arginine addition enhances the conversion of AMPK into its 
active phosphorylated form, thus favoring fatty acid oxidation and ATP synthesis while 
glucose metabolism is supporting malate formation and L-glutamate formation for NADPH 
and GSH generation respectively. This requirement, however, results in a reduction in 
stimulus-secretion coupling and the associated insulin release. 
We have also observed that NOS-2 expression is stimulated by the cytokine cocktail (which 
enhances iNOS activity) but NO synthesis was not enhanced by changing L-arginine in the 
culture medium. This suggests that iNOS is saturated with L-arginine which, in turn, results 

in elevated urea production. This shunt in L-arginine metabolism efficiently preserves -cell 
redox status by favoring the production of GSH in conditions which generate excessive 
levels of NO (Fig. 2C and 2D). 
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Fig. 2. L-Arginine-glutamate-NO coupling in -cells. Under physiological secretagogue-

mediated insulin release, both NO and GSH are obligatory intermediates. Accordingly, -cells 
have an intricate iNOS-cantered machinery to produce NO, which potentiates insulin secretion 
physiologically. At the same time, insulin-secreting pancreatic cells utilise glutamate-derived 
GSH in order to maintain redox status needed to allow hormonal secretion and to avoid a 
possible NO-mediated cytotoxicity. L-Arginine derived from the kidney is the physiological 

substrate for the NF-B-dependent iNOS-catalyzed NO production in -cells. Under 

insufficient L-arginine supply, however, the high throughput of NO for -cells may be attained 
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by the concerted action of phosphate-dependent glutaminase (PDG), glutamate 
dehydrogenase (GDH), aspartate aminotransferase (not shown), carbamoylphosphate 
synthetase I (CPS), ornithine transcarbamoylase (OTC), argininosuccinate synthetase (ASS) 
and argininosuccinate lyase (ASL), which, dramatically enhances the flux of L-glutamate 

towards NO production. In the presence of an inflammatory NF-B-centered cytokine insult, 

multiple negative feedback systems act in -cells in order to warrant L-arginine entry in iNOS 
metabolic pathway (lower part of the figure). This is achieved mainly due to the inhibition of 
L-arginase activity by L-citrulline, NG-hydroxy- L-arginine (L-NOHA, an intermediate in NO 
synthesis) and S-nitrosoglutathione (SNOG), which is formed during NO biosynthesis. On the 

other hand, -cells have to synthesize GSH from L-glutamate, L-cysteine and L-glycine, once 
regeneration of GSH from glutathione disulphide (GSSG) via NADPH-dependent GSSG 

reductase is relatively low in -cells because of the high flux of glucose towards ATP 
production that empty pentose-phosphate shunt impairing NADPH production. In turn, de 
novo GSH synthesis is mainly dependent on liver-emanated supply of glutamate, which is not 

enough to allow for the enormous flux towards -glutamylcysteine synthetase (glutamate-
cysteine ligase) and GSH synthetase in the GSH biosynthetic pathway. Therefore, muscle-
derived L-alanine and L-glutamine constitute the principal sources of L-glutamate for GSH 

synthesis. Because of this, any reduction in L-arginine supply to -cells accounts for a rapid 
shift in L-glutamate metabolism from GSH synthesis towards NO production. For instance, 

during Th1-elicited immune responses, the concerted enhancement of NF-B-mediated (*) 
expression of ASS, ASL and iNOS dramatically boosts NO production from L-glutamate. If this 

rise in NO production is not accompanied by an enhanced L-arginine supply to -cells, NO 
becomes very cytotoxic. Type 2 cytokines, such as interleukin-6 (IL-6) may alleviate NO 
toxicity by enhancing L-arginase expression that diverts L-arginine to the formation of L-
ornithine and urea. At the same time, intracellular expression of the 70-kDa family of heat 

shock proteins (HSP70), which blocks a surplus activation of NF-B-dependent genes, is 

cytoprotective because it warrants an equilibrium for NO production via NF-B-dependent 
iNOS expression thus avoiding NO cytotoxic effects. Results from the present work reveal a 
novel as yet unpredicted facet of L-arginine metabolism in that an increase in its plasma 
concentrations (from A to B) could drift GSH metabolism from its original main source, via L-

glutamine metabolism, towards the production of L-glutamate via the left side of the -cell 
urea cycle, by the consecutive action of L-arginase, pyrroline-5-carboxylate dehydrogenase 

(PCDH), ornithine aminotransferase (OAT), -glutamylcysteine synthetase (not shown) and 
GSH synthetase (not shown). Under inflammatory stimuli (C and D), enhancement of 
L-arginine concentration may alleviate the excessive flux through iNOS by limiting 
L-arginine availability due to its conversion into GSH. Concomitantly, elevation of 
L-arginine levels are thought to deviate glucose mitochondrial metabolism towards its 
cytosolic utilisation as a NADPH precursor via malic enzyme (ME). This favors the 
regeneration of more GSH molecules from GSSG under oxidative stress conditions. 
L-Arginine may also stimulate AMPK activation which modulates closure of KATP channels 
and insulin secretion. NO is also capable of activating AMPK. However, in a high L-arginine 
environment, the excessive activation of AMPK may stimulate lipolysis and energy saving 
at the expense of insulin secretion. Since physical exercise stimulates L-glutamine flux 
towards L-arginine production, peaks IL-6 secretion by the stretching skeletal muscle and 
induces HSP70 expression throughout the body tissues, exercise continues to be the 
cheapest and most efficient way of preventing type-1 diabetes onset. Arrow widths indicate 
the intensity of the metabolic flux through each pathway.  
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L-Arginase is normally associated with a Km value for L-arginine that is much higher than 
that of iNOS but a greater Vmax value compared with iNOS (Mori, 2007), so that the Vmax/Km 
ratios of both enzymes are close to each other and thus these enzymes may be expected to 

compete for L-arginine equally in -cells. In our hands, iNOS seemed to be saturated in 

-cells, regardless of the presence of inflammatory cytokines, so that -cell urea production 
is able to furnish L-ornithine and thus L-glutamate for GSH synthesis in appropriate 

conditions. Moreover, L-arginine may protect -cells via the induction of haem oxygenase 
(HO-1) expression (data not shown). HO activity is an important detoxifying enzyme, due to 
its ability to scavenge haem groups thus providing redox protection (Abraham & Kappas, 

2008). However, it is plausible that HO expression in -cells in response to L-arginine may 
also play a metabolic role, since one of its direct products, carbon monoxide (CO), has 

recently been reported to induce insulin secretion and to improve in vivo function of -cells 
after transplant (Abraham & Kappas, 2008). Moreover, the long-lasting expression of this 
enzyme has been shown to delay the progression of type 1 diabetes in NOD mice (Li et al., 
2007).  Hence, L-arginine can be recognised as an antioxidant in its own right, being 
comparable with known antioxidant stimuli, such as phytochemical supplements 
(Velmurugan et al., 2009). 
Furthermore, and interestingly, chronic hyperlactataemia, in which high plasma levels of 
lactate block intestinal proline oxidase activity leading to severe hypocitrullinaemia and 
hypoargininaemia (Dillon et al., 1999), has been described as an independent risk factor for 
diabetes development, with lactate being an important factor for maintaining insulin 
resistance (DiGirolamo et al., 1992; Lovejoy et al., 1992). Conversely, L-arginine 
supplementation to critical care patients did induce L-glutamine rise in the plasma (Loï et 
al., 2009), which may be related to the fact the L-arginine supplementation spares plasma 
glutamine pools. 
In synthesis, L-arginine derived from the kidney (Fig. 1) is the physiological substrate for the 

NF-B-dependent iNOS-catalysed NO production in -cells. Under insufficient L-arginine 

supply, however, the high throughput of NO for -cells may be attained by the concerted 
action of phosphate-dependent glutaminase (GDP), glutamate dehydrogenase (GDH), 
aspartate aminotransferase (AsAT), carbamoylphosphate synthetase (CPS), ornithine 
transcarbamoylase (OTC), argininosuccinate synthetase (ASS) and argininosuccinate lyase 
(ASL), which, dramatically enhances the flux of glutamate towards NO production. 

Multiple negative feedback systems act in -cells in order to warrant L-arginine entry in 
iNOS metabolic pathway. This is achieved mainly due to the inhibition of L-arginase activity 
by L-citrulline, NG-hydroxy-L-arginine (L-NOHA, an intermediate in NO synthesis) and 
S-nitrosoglutathione (SNOG), which is formed during NO biosynthesis. On the other hand, 

-cells have to synthesise GSH from L-glutamate, L-cysteine and L-glycine, because 
regeneration of GSH from GSSG via NADPH-dependent GSSG reductase is relatively low in 

-cells because of the high flux of glucose towards ATP production that empty pentose-
phosphate shunt, the major NADPH-producing system. In turn, de novo GSH synthesis is 
mainly dependent on liver-derived supply of glutamate, which is not enough to allow for 

the enormous flux towards -glutamylcysteine synthetase and GSH synthetase in the GSH 
biosynthetic pathway. Therefore, muscle-derived L-alanine and L-glutamine constitute the 

principal sources of L-glutamate for GSH synthesis in order to spare -cell L-arginine stores. 
In fact, previous reports from our laboratory have highlighted the importance of 
L-glutamine and L-alanine for GSH generation, insulin secretion and protection against pro-
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inflammatory cytokines (Brennan et al., 2003; Brennan et a., 2002; Cunninham et al., 2005). 

Because of this, any reduction in L-arginine supply to -cells accounts for a rapid shift in 
L-glutamate metabolism from GSH synthesis towards NO production. For instance, during 
Th1-elicited immune responses (e.g. as in Fig. 2C and 2D), the concerted enhancement of 

nuclear factor NF-B-mediated expression of ASS, ASL and iNOS dramatically boosts NO 
production from L-glutamate. If this rise in NO production is not accompanied by an 

enhanced L-arginine supply to -cells, NO becomes very cytotoxic. Type 2 cytokines (T2-CK) 
may alleviate NO toxicity by enhancing L-arginase expression that deviates L-arginine to the 
formation of L-ornithine and urea.  

6. Psychological stress and the role peripheral sympathetic nervous system-
histamine-CRH axis activation in type 1 diabetes 

It has long been recognised that stressful situations are closely related to the onset of type 1 
diabetes. In fact, many stressful conditions that are associated with immune system 
imbalances, including psychological ones, are associated with the incidence of type 1 
diabetes (Soltesz, 2003; Dahlquist, 2006). Indeed, it has recently been shown that stressful life 
events and psychological dysfunctions dramatically augment the likelihood of the incidence 
of type 1 diabetes in children and adolescents (Sipetic et al., 2007). These include parents' 
job-related changes or lost job, severe accidents, hospitalization or death of a close friend, 
quarrels between parents, war, near-drowning in a pool, falling down, being an unhurt 
participant of an accident, conflicts with parents/teacher/neighbours, to be lost in town, 
physical attack, failure in competition, penalty, examination, death of pet, presence of 
lightning strike, loss of housing accommodation and learning problems.  
As a general rule, stress is considered as immunosuppressive. Surprisingly, however, a 
growing body of evidence strongly suggests that acute stress serves as a pro-inflammatory 
stimulus via the production of corticotropin-releasing hormone (CRH) by peripheral 
sympathetic nerve terminals (Elenkov et al., 1999). CRH stimulates lymphocyte proliferation 

(McGillis et al., 1989; Jessop et al., 1997) and secretion of IL-1 and IL-2 by mononuclear cells 
isolated from the peripheral blood of healthy subjects (Singh & Leu, 1990). Peripheral CRH 
exerts a pro-inflammatory effect in autoimmune diseases with a selective increase in 

Th1-type responses, which is mediated by an NF-B-dependent pathway (Benou et al., 
2005). Additionally, it is possible that, upon a stressful situation, peripherally delivered 
CRH activates mast cells that secrete histamine, which acts via H1 receptors to induce local 
inflammation (Elenkov et al., 1999). In fact, diabetes is associated with increased basal 
hypothalamus-pituitary-adrenal (HPA) activity and impaired stress responsiveness (Chan  
et al., 2005). Therefore, psychological stress may selectively activate Th1 lymphocytes that 

mediate type-1 cytokine-induced iNOS expression, exacerbated NO production and -cell 
cytotoxicity. Enhanced Th1 activity, in turn, increases L-glutamine utilisation with the 
consequent shift of L-glutamate metabolism from GSH biosynthesis towards NO 
production, as discussed above (Fig. 2 and 3).  
Taken together, these findings suggest that psychological stress may have a dual and cross-
potentiating role in determining the onset of type 1 diabetes: an immunoinflammatory 
(Fig. 3) and a metabolic one (Fig. 2C and 2D).  Arguing in proof of such a hypothesis is the 
observation that orally administered L-arginine supplementation significantly improves 
patient status in a series of different pathological conditions associated with immune 
dysfunctions, including in pre-term neonates (Wu et al., 2004), without increasing urea  
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Fig. 3. Psychological stress and autoimmune diabetes. Different stressful situations may lead 
to the activation of sympathetic-corticotropin-releasing hormone (CRH)-histamine axis that 
triggers a Th1-specific immunoinflammatory response. Peripheral sympathetic nerve-
derived CRH released under acute psychological stressful situations is capable of 
stimulating mast cells and Th1 lymphocytes, which arm an immunoinflammatory response. 
Auto-reactive Th1 cell subset and its cytokine products (type 1 cytokines, T1-CK) raised 
against islet -cell antigen(s) mediate the activation of macrophages and Th1 lymphocytes, 
favouring insulitis. Additionally, other predisposing factors may also exacerbate -cell 
injury and the onset of type 1 diabetes mellitus (T1DM). 

levels (Wilmore, 2004). Curiously, intraperitoneal L-arginine injection, where the 
physiological coupling of L-glutamine/L-arginine  through the intestinal-renal axis  is 
bypassed,  does not improve diabetes in animal models. On the contrary, it seems to worsen 
it (Mohan & Das, 1998), while oral administration of L-arginine to alloxan-treated rats 
restores blood glucose and insulin levels (Vasilijevic et al., 2007). Oral L-arginine 
administration has also been shown to improve, but not completely, peripheral and hepatic 
insulin sensitivity in type 2 diabetes (Piatti et al., 2001), where oxidative stress (Carvalho-
Filho et al., 2005; Oliveira et al., 2003; Hirabara et al., 2006) and NO overproduction 
(Newsholme et al., 2007; Carvalho-Filho et al., 2005) are also involved. If this is so, 
nutritional management of L-glutamine and/or L-arginine, enterally administered in order 
to allow for the physiological re-establishment of L-glutamine/L-arginine homeostasis 

(Vermeulen et al., 2007), may rescue -cell redox balance in ongoing type 1 diabetes. 
Additionally, skeletal muscle is a major site for L-glutamine synthesis in the human body 
and contains over 90% of the whole-body L-glutamine pool. Quantitative studies in humans 
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(Newsholme et al., 2003) have demonstrated that, in the postabsorptive state, 60% of the 
amino acids released comprise L-alanine plus L-glutamine (Fig. 1A). Therefore, moderate 
physical exercise, which is known to accelerate the rate of L-glutamine delivery into the 
circulation, may be of value in protecting L-glutamine/L-arginine metabolic coupling 

between the gut and -cells. 

7. Influence of regular physical exercise in L-arginine/L-glutamine coupling in 

-cells 

During physical exercise sessions, pro-inflammatory cytokine production is downregulated 
and anti-inflammatory cytokines, such as IL-1 receptor antagonist (IL-1ra), IL-10 and IL-6, 
are upregulated (Drenth et al., 1995; Nieman & Pedersen, 1999; Rohde et al., 1997).  In this 
sense, IL-6 seems to play a capital role during exercise-induced changes in immune 
function. In fact, the level of circulating IL-6 has been shown to increase dramatically (up to 
100-fold) in response to exercise (Pedersen & Hoffman-Goetz, 2000; Febbraio et al., 2002; 
Pedersen & Steensberg, 2002; Pedersen et al., 2001). Most studies have also reported that 

exercise, per se, does not increase plasma levels of TNF, although some have shown that 
strenuous, prolonged exercise, such as marathon running, results in a small increase in the 

plasma concentration of TNF (Pedersen et al., 1998; Suzuki et al., 2000). This long-term 
effect of exercise may be ascribed to the anti-inflammatory response elicited by an acute 
bout of exercise, which is partly mediated by muscle-derived IL-6. 
Physiological concentrations of IL-6 stimulate the appearance, in the circulation, of the anti-
inflammatory cytokines IL-1ra and IL-10, and inhibit the production of the pro-

inflammatory cytokine TNF. Hence, exercise-induced IL-6 release downregulates pro-
inflammatory cytokine production while increasing anti-inflammatory cytokine production 
and action, which may induce a very strong anti-inflammatory cytokine response. The main 
modulator of these responses is likely to be the appearance of IL-6 in the circulation. Since 

IL-6 strongly downregulates NF-B activation, we believe that moderate exercise-induced 

IL-6 production may suppress NF-B-dependent iNOS while stimulating L-arginase 

activity/expression with a consequent decrease in NO-dependent -cell death upon Th1-

driven -cell assault. Therefore, besides any possible beneficial effect that moderate exercise 
may have on L-glutamine/L-arginine coupling that is responsible for the maintenance of 

-cell redox homeostasis and insulin secreting capacity (see above), mild physical exercise 
may shut off pro-inflammatory cytokine machinery, which gives rise to an additional 
protection against the development of type 1 diabetes. 

Even though the effects of IL-6 on -cells remains a matter of debate and controversies 

(Wadt et al., 1998), it has been found that IL-6 hinders the development of type 1 

diabetes in different mouse models (Campbell et al., 1994; DiCosmo et al., 1994). 

Moreover, IL-6 has proven to be effective in protecting insulin-secreting MIN6 cells and 

freshly isolated pancreatic islets against Th1-derived cytokine (IL-1, TNF and IFN)-
induced apoptosis while improving cellular viability and insulin secretion (Choi et al., 

2004). Altogether, the above propositions support an important protective effect of 

exercise-dependent muscle-derived IL-6 on -cells against the development of diabetes. 

Moreover, exercise-induced HSP70 expression in non-muscular cells may have a critical 

influence in maintaining an anti-inflammatory status, as discussed above. However, 

exercise-induced HSP70 in pancreatic -cells has never been addressed. Therefore, we 
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are currently evaluating the effects of acute and chronic (training) exercise sessions 

(swimming) on HSP70 pathways and L-glutamine/L-arginine coupling enzymes in 

animal pancreatic islets and isolated -cells.  

8. Conclusion 

Continued supply of L-arginine, physiologically provided by the metabolism of L-glutamine 
via the intestinal-renal axis and from skeletal muscle, which is enhanced during exercise, is 

essential for -cell functional integrity and, indeed, for -cell defence. The dysregulation of 

immune system function, characteristic of Th1-elicited -cell toxicity and impaired insulin 
secretion, which accompany the onset of type 1 diabetes, may be triggered when an 
individual faces a strong psychological stress that determines an enhanced L-glutamine 
utilisation by Th1 lymphocytes. The oxidative stress that takes place upon reduced 

intracellular GSH levels allows for the activation of NF-B, which, in turn, positively feeds 
back on iNOS expression and activity, thus perpetuating the inflammatory process within 

-cells where excess NO is harmful. Defective HSP70 induction in response to physiological 
levels of intraislet NO may also be involved in the pathogenesis of type 1 diabetes. Physical 
exercise, on the other hand, is capable of inducing a huge production and release of IL-6, 

which is a key anti-inflammatory mediator that suppresses NF-B-dependent responses. 
Moreover, exercise-elicited activation of HSP70 biochemical pathways completely blocks 

NF-B activation, impedes apoptosis and is cytoprotective due to HSP70 chaperone activity, 
which protects against protein denaturation. HSP70 induction is also associated with 
enhanced Th2 cell activity over Th1. Metabolically, exercise may restore L-glutamine supply 
thus normalizing pancreatic production of NO from kidney-derived L-arginine, and not 
from L-glutamate which is necessary for GSH synthesis and antioxidant defence. Thus the 
enormous changes in human life style, compared with that of our 3-4 million-old ancestors, 

could be related with our current inability in maintaining healthy -cells. As previously 
argued (Krause & Homem de Bittencourt, 2008), we advocate that present-day levels of 
physical activity and dietary patterns (Simopoulos, 2006; Wisloff et al., 2005) seem to have 
changed much faster than the time needed to allow evolutionary metabolic changes. In 
other words, our metabolism evolved to fit a level of physical activity and availability of a 
variety of food supplies different from those of nowadays (favouring energy conservation 
and storage). As a corollary, unless humans enhance their pattern of physical activity, 
diabetes will become more and more of a risk factor in the population. Therefore, the notion 

that -cells are solely bystanders of oxidative stress-mediated cell toxicity because their 
antioxidant defences fail in managing physiological stress is an unfortunate misconception. 

Since the L-glutamine/L-arginine duet may influence -cell function and survival, the 
knowledge of physiologically adequate levels and fluxes of both amino acids may serve as a 

predictor of -cell susceptibility to dysfunction or death in diabetes. Additionally, although 
the possibility of pharmacologically exploiting Th1/Th2 duality relative to L-arginine 
metabolism may open new avenues for diabetes therapeutics, physical exercise is still the 
cheapest and easiest physiological measure to avoid the onset and/or worsening of 
diabetes. In summary, if the prevention of diabetes is dependent on HSP70 expression and 

both restoration of adequate L-arginine supply to -cells and blockage of NF-B 
overstimulation, moderate physical exercise is presented as the most convenient solution for 
these two lacunes.   
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