1,068 research outputs found
On the adaptive advantage of always being right (even when one is not)
We propose another positive illusion – overconfidence in the generalisability of one’s theory – that fits with McKay & Dennett’s (M&D’s) criteria for adaptive misbeliefs. This illusion is pervasive in adult reasoning but we focus on its prevalence in children’s developing theories. It is a strongly held conviction arising from normal functioning of the doxastic system that confers adaptive advantage on the individual
The art of HIV elimination: past and present science
Introduction: Remarkable strides have been made in controlling the HIV epidemic, although not enough to achieve epidemic control. More recently, interest in biomedical HIV control approaches has increased, but substantial challenges with the HIV cascade of care hinder successful implementation. We summarise all available HIV prevention methods and make recommendations on how to address current challenges.
Discussion: In the early days of the epidemic, behavioural approaches to control the HIV dominated, and the few available evidence-based interventions demonstrated to reduce HIV transmission were applied independently from one another. More recently, it has become clear that combination prevention strategies targeted to high transmission geographies and people at most risk of infections are required to achieve epidemic control. Biomedical strategies such as male medical circumcision and antiretroviral therapy for treatment in HIV-positive individuals and as preexposure prophylaxis in HIV-negative individuals provide immense promise for the future of HIV control. In resourcerich settings, the threat of HIV treatment optimism resulting in increased sexual risk taking has been observed and there are concerns that as ART roll-out matures in resource-poor settings and the benefits of ART become clearly visible, behavioural disinhibition may also become a challenge in those settings. Unfortunately, an efficacious vaccine, a strategy which could potentially halt the HIV epidemic, remains elusive.
Conclusion: Combination HIV prevention offers a logical approach to HIV control, although what and how the available options should be combined is contextual. Therefore, knowledge of the local or national drivers of HIV infection is paramount. Problems with the HIV care continuum remain of concern, hindering progress towards the UNAIDS target of 90-90-90 by 2020. Research is needed on combination interventions that address all the steps of the cascade as the steps are not independent of each other. Until these issues are addressed, HIV elimination may remain an unattainable goal
Evaluating Thermal Comfort and Overheating Risks in A Social Housing Prototype: As-Built Versus Retrofit Scenarios
Climate change has highlighted the importance of thermal comfort and its health-related outcomes, particularly for the most vulnerable members of society living in social housing. Due to their vulnerable living conditions, low-income people are more exposed to negative outcomes of overheating and cold indoor temperatures in buildings. Previous studies suggest that there is a significant risk of overheating in retrofitted buildings both for the current and future weather scenarios. The UK government has introduced new building regulations to assess and limit the risk of overheating in new buildings; however, there is still a need to assess and improve conditions for existing and retrofitted properties. This study aims to evaluate the effect of retrofit strategies on thermal comfort and the risk of overheating in social housing under current and future climatic conditions. A typical case study building was simulated in DesignBuilder to assess thermal comfort conditions for upgraded building fabric to Part L of the UK building regulations and Passive House standards. The summer results were analyzed according to CIBSE TM59 while the Predicted Mean Vote index (PMV) was used for winter analysis. Findings revealed that the south-facing bedrooms are most exposed to overheating. Risk of overheating significantly increased for the future weather scenarios by up to 10 times while winter thermal comfort improved for the retrofitted scenarios
Interactions of heavy nuclei, Kr, Xe and Ho, in light targets
Over the past few years, the HEAO-3 measurements of the abundances of ultra-heavy cosmic ray nuclei (Z 26) at earth have been analyzed. In order to interpret these abundances in terms of a source composition, allowance must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed. During a recent calibration at the Bevalac of an array similar to the HEAO-C3 UH-nuclei detector, targets of raphite (C), polyethylene (CH2), and aluminum were exposed to five heavy ion beams ranging in charge (Z) from 36 to 92. Total and partial charge changing cross sections for the various beam nuclei on hydrogen can be determined from the measured cross sections on C and CH2, and will be applied to the propagation problem. The cross sections on Al can be used to correct the abundances of UH cosmic rays observed in the HEAO C-3 detector for interactions in the detector itself
Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses
Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 µg·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 µm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections
Pulsed Feedback Defers Cellular Differentiation
Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle
The Non-Z^2 Response of the Heavy Nuclei Cosmic Ray Detector on HEAO-3
A combination of ion chambers and Cerenkov radiators similar to the Heavy Nuclei Experiment flown on HEAO-3 was calibrated at the Bevalac heavy-ion accelerator using beams of Mn-25 nuclei at kinetic energies up to about 1700 MeV/nucleon and Au-79 nuclei up to about 1000 MeV/nucleon. The data show only a small deviation (about 2-3 charge units at Au) from the Z^2 scaling used previously (Binns et al., 1981, 1982, 1983) to analyze the HNE data. Although at lower energy, the calibration indicates that the published relative abundances of the _(50)Sn/_(56)Ba group and the published upper-limit actinide abundances are not likely to be significantly affected by non-Z^2 effects
The Cosmic-Ray Abundances of the Platinum-Lead Elements as Measured on HEAO-3
The relative abundances of elements in the charge ranges of 75 ≤ Z ≤ 79 (platinum) and 80 ≤ Z ≤ 83 (lead) should be a sensitive indication of the contributions of the r- and s-processes in nucleosynthesis. Data from the HEAO 3 Heavy Nuclei Experiment are used to establish abundances, relative to iron, of these elements in the cosmic radiation, as well as the ratio of 'secondary' elements, in the 62 ≤ Z ≤ 74 range, to the primary lead-platinum elements. These results appear to suggest that either the source abundances are deficient in s-process elements or that they are not organized solely by first ionization potential. In addition, present propagation models can adequately represent the relative abundances of primary and secondary elements
Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV
We describe a new search for diffuse ultrahigh energy gamma-ray emission
associated with molecular clouds in the galactic disk. The Chicago Air Shower
Array (CASA), operating in coincidence with the Michigan muon array (MIA), has
recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995.
We search for gamma rays based upon the muon content of air showers arriving
from the direction of the galactic plane. We find no significant evidence for
diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma
rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90%
confidence limit) from the galactic plane region: (50 degrees < l < 200
degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on
models for emission from molecular clouds in the galaxy. We rule out
significant spectral hardening in the outer galaxy, and conclude that emission
from the plane at these energies is likely to be dominated by the decay of
neutral pions resulting from cosmic rays interactions with passive target gas
molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3
Postscript figure
The Abundances of Ultraheavy Elements in the Cosmic Radiation
Analysis of a new, higher resolution data set from the Heavy Nuclei Experiment on
the HEA0-3 spacecraft has yielded the cosmic ray abundances relative to iron of oddeven
element pairs with atomic number, Z, in the range 33≤Z≤60. The abundances are
consistent with a solar-system source provided an allowance is made for a source
fraetionation based on first ionization potential (FIP). However, extending this analysis·
to element groups with Z>60, we find enhancements of the Pt group (74≤Z≤80)
abundance relative to the solar system and a corresponding increase in the largely
secondary nuclei in the range 62≤Z≤73, in agreement with recent Ariel-6 results. These
abundances suggest an enhancement of the r-process contribution to the source of the
Z > 60 nuclei
- …