1,444 research outputs found

    Smoothed Analysis of Dynamic Networks

    Full text link
    We generalize the technique of smoothed analysis to distributed algorithms in dynamic network models. Whereas standard smoothed analysis studies the impact of small random perturbations of input values on algorithm performance metrics, dynamic graph smoothed analysis studies the impact of random perturbations of the underlying changing network graph topologies. Similar to the original application of smoothed analysis, our goal is to study whether known strong lower bounds in dynamic network models are robust or fragile: do they withstand small (random) perturbations, or do such deviations push the graphs far enough from a precise pathological instance to enable much better performance? Fragile lower bounds are likely not relevant for real-world deployment, while robust lower bounds represent a true difficulty caused by dynamic behavior. We apply this technique to three standard dynamic network problems with known strong worst-case lower bounds: random walks, flooding, and aggregation. We prove that these bounds provide a spectrum of robustness when subjected to smoothing---some are extremely fragile (random walks), some are moderately fragile / robust (flooding), and some are extremely robust (aggregation).Comment: 20 page

    Letter from C. O. Mailloux to Newport Illuminating Co, copy to John Yale

    Get PDF
    https://digitalcommons.salve.edu/ochre-court/1167/thumbnail.jp

    Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials

    Get PDF
    The use of low-carbon supplementary cementitious materials (SCM), such as calcined clays, to replace cement clinker has been recognized by the Cement Industry to achieve reductions in greenhouse gas emissions. This paper investigates eight low-grade clays, with <20% kaolinite, obtained from different geological formations, that have been calcined to produce potential SCMs. The clays were characterised before and after calcining at 750, 800, 850 and 900 °C, and the mineralogical changes and amorphous phase contents determined. The pozzolanic activity and the strength activity index of the different calcined clays were evaluated. The results show that calcined clays from the Oxford and Ampthill geological formations in the UK can produce SCMs with pozzolanic activity higher than conventional SCMs such as PFA. These clays were rich in illite and smectite and produced ∼60% amorphous phase when calcined at 850 °C. Mortars produced using calcined clays had higher compressive strengths than mortars containing pulverised fuel ash and achieved ∼90% of the compressive strength of 100% Portland cement mortar samples at 28 days. The research demonstrates that low-grade clay resources can be calcined to produce SCMs and that these can be used to form cementitious materials with reduced total associated CO₂ emissions

    Acid activated smectite clay as pozzolanic supplementary cementitious material

    Get PDF
    This research has investigated the structural changes and pozzolanic activity produced in acid activated smectite clay. The activation treatment used HCl at different concentrations, using different times and at a range of temperatures. X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were used to determine the acid dissolution mechanism and characterise the activated clay mineral structure. Acid activation causes dehydroxylation of smectite clay, followed by leaching of octahedral cations. This results in the formation of a silica-rich amorphous phase that exhibits substantial pozzolanic activity compared to the same clay sample that had undergone calcining treatment at 850. The optimum sample was activated for 8 h using 5 M HCl at 90 °C. This was 93 % amorphous. Mortar prisms prepared with 25 % replacement of Portland cement by acid activated smectite produced 93 % compressive strength of plain Portland cement mortar

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(log2n/F+lognpolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Stepping Up and Taking the Lead: School-Based SLPs\u27 Perceptions and Attitudes of Leadership

    Get PDF
    This research explores the personal perspectives of school-based SLPs regarding their training in, perceptions of, and experiences regarding leadership. Survey research was conducted, and school based SLPs acted as respondents. Results may inform education in leadership, both in student training and in continuing education. Leadership in the field of speech-language pathology is essential to not only advocate for better outcomes of clients and patients, but also to foster an environment for change and understanding for future generations of SLPs

    Interactions of heavy nuclei, Kr, Xe and Ho, in light targets

    Get PDF
    Over the past few years, the HEAO-3 measurements of the abundances of ultra-heavy cosmic ray nuclei (Z 26) at earth have been analyzed. In order to interpret these abundances in terms of a source composition, allowance must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed. During a recent calibration at the Bevalac of an array similar to the HEAO-C3 UH-nuclei detector, targets of raphite (C), polyethylene (CH2), and aluminum were exposed to five heavy ion beams ranging in charge (Z) from 36 to 92. Total and partial charge changing cross sections for the various beam nuclei on hydrogen can be determined from the measured cross sections on C and CH2, and will be applied to the propagation problem. The cross sections on Al can be used to correct the abundances of UH cosmic rays observed in the HEAO C-3 detector for interactions in the detector itself

    Using soil microbial inoculations to enhance substrate performance on extensive green roofs

    Get PDF
    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture (‘compost tea’) to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5 cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing rooftop conditions
    corecore