1,097 research outputs found
The Impact of Temperature on Physical Activity Levels During a 12-Week Walking Intervention
Please view abstract in the attached PDF file
PRMT5 and the Role of Symmetrical Dimethylarginine in Chromatoid Bodies of Planarian Stem Cells
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway
Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves
This paper presents a new procedure to derive fragility functions for populations of buildings that relies on the
displacement-based earthquake loss assessment (DBELA) methodology. In the method proposed herein,
thousands of synthetic buildings have been produced considering the probabilistic distribution describing the
variability in geometrical and material properties. Then, their nonlinear capacity has been estimated using the
DBELA method and their response against a large set of ground motion records has been estimated. Global limit
states are used to estimate the distribution of buildings in each damage state for different levels of ground
motion, and a regression algorithm is applied to derive fragility functions for each limit state. The proposed
methodology is demonstrated for the case of ductile and non-ductile Turkish reinforced concrete frames with
masonry infills
A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole
The description of extreme-mass-ratio binary systems in the inspiral phase is
a challenging problem in gravitational wave physics with significant relevance
for the space interferometer LISA. The main difficulty lies in the evaluation
of the effects of the small body's gravitational field on itself. To that end,
an accurate computation of the perturbations produced by the small body with
respect the background geometry of the large object, a massive black hole, is
required. In this paper we present a new computational approach based on Finite
Element Methods to solve the master equations describing perturbations of
non-rotating black holes due to an orbiting point-like object. The numerical
computations are carried out in the time domain by using evolution algorithms
for wave-type equations. We show the accuracy of the method by comparing our
calculations with previous results in the literature. Finally, we discuss the
relevance of this method for achieving accurate descriptions of
extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure
Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs
Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17â34 (ANC tests) wk.Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOMinjections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5â6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon
Neutral-current neutrino cross section and expected supernova signals for Ar from a three-fold increase in the magnetic dipole strength
In view of the great interest in liquid argon neutrino detectors, the
Ar()Ar reaction was revisited to guide a
calculation of the neutral current neutrino cross section at supernova
energies. Using the nuclear resonance fluorescence technique with a
monoenergetic, 99% linearly polarized photon beam, we report a three-fold
increase in magnetic dipole strength at around 10 MeV in Ar. Based on
shell-model calculations, and using the experimentally identified transitions,
the neutral current neutrino cross sections for low-energy reactions on
Ar are calculated
A nonsmooth frictional contact formulation for multibody system dynamics
We present a new node-to-face frictional contact element for the simulation of the nonsmooth dynamics of systems composed of rigid and flexible bodies connected by kinematic joints. The equations of motion are integrated using a nonsmooth generalized-α time integration scheme and the frictional contact problem is formulated using a mixed approach, based on an augmented Lagrangian technique and a Coulomb friction law. The numerical results are independent of any user-defined penalty parameter for the normal or tangential component of the forces and, the bilateral and the unilateral constraints are exactly fulfilled both at position and velocity levels. Finally, the robustness and the performance of the proposed algorithm are demonstrated by solving several numerical examples of nonsmooth mechanical systems involving frictional contact.Fil: Galvez, Javier. UniversitĂ© de LiĂšge; BĂ©lgicaFil: Cavalieri, Federico JosĂ©. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones en MĂ©todos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en MĂ©todos Computacionales; ArgentinaFil: Cosimo, Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones en MĂ©todos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en MĂ©todos Computacionales; Argentina. UniversitĂ© de LiĂšge; BĂ©lgicaFil: BrĂŒls, Olivier. UniversitĂ© de LiĂšge; BĂ©lgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones en MĂ©todos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en MĂ©todos Computacionales; Argentin
- âŠ