1,699 research outputs found
STEM materials: a new frontier for an intelligent sustainable world
Materials are addressed as possible enablers for solutions to many global societal challenges. A foresight exercise has been conducted to identify research paths to design, with a new approach, a generation of materials which can provide multi-functionalities. These material systems have been named ???stem???, in analogy to living cells where a base of primitive units can be designed and assembled for self-reacting to external inputs. These materials will embed a concept of ???internet in things???, where their processing capacity will enable the systems to interact with the environment and express diverse functionalities. Stem materials do not exist yet, but many clues from diferent theoretical and experimental results suggest they can be developed, and because living organisms exist. This article aims at launching this new approach and promoting the structuring of a multi-disciplinary community to fll the research gaps
Emergence of scale-free close-knit friendship structure in online social networks
Despite the structural properties of online social networks have attracted
much attention, the properties of the close-knit friendship structures remain
an important question. Here, we mainly focus on how these mesoscale structures
are affected by the local and global structural properties. Analyzing the data
of four large-scale online social networks reveals several common structural
properties. It is found that not only the local structures given by the
indegree, outdegree, and reciprocal degree distributions follow a similar
scaling behavior, the mesoscale structures represented by the distributions of
close-knit friendship structures also exhibit a similar scaling law. The degree
correlation is very weak over a wide range of the degrees. We propose a simple
directed network model that captures the observed properties. The model
incorporates two mechanisms: reciprocation and preferential attachment. Through
rate equation analysis of our model, the local-scale and mesoscale structural
properties are derived. In the local-scale, the same scaling behavior of
indegree and outdegree distributions stems from indegree and outdegree of nodes
both growing as the same function of the introduction time, and the reciprocal
degree distribution also shows the same power-law due to the linear
relationship between the reciprocal degree and in/outdegree of nodes. In the
mesoscale, the distributions of four closed triples representing close-knit
friendship structures are found to exhibit identical power-laws, a behavior
attributed to the negligible degree correlations. Intriguingly, all the
power-law exponents of the distributions in the local-scale and mesoscale
depend only on one global parameter -- the mean in/outdegree, while both the
mean in/outdegree and the reciprocity together determine the ratio of the
reciprocal degree of a node to its in/outdegree.Comment: 48 pages, 34 figure
Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements
Understanding the neural mechanisms responsible for human social interactions
is difficult, since the brain activities of two or more individuals have to be
examined simultaneously and correlated with the observed social patterns. We
introduce the concept of hyper-brain network, a connectivity pattern
representing at once the information flow among the cortical regions of a
single brain as well as the relations among the areas of two distinct brains.
Graph analysis of hyper-brain networks constructed from the EEG scanning of 26
couples of individuals playing the Iterated Prisoner's Dilemma reveals the
possibility to predict non-cooperative interactions during the decision-making
phase. The hyper-brain networks of two-defector couples have significantly less
inter-brain links and overall higher modularity - i.e. the tendency to form two
separate subgraphs - than couples playing cooperative or tit-for-tat
strategies. The decision to defect can be "read" in advance by evaluating the
changes of connectivity pattern in the hyper-brain network
Popularity versus Similarity in Growing Networks
Popularity is attractive -- this is the formula underlying preferential
attachment, a popular explanation for the emergence of scaling in growing
networks. If new connections are made preferentially to more popular nodes,
then the resulting distribution of the number of connections that nodes have
follows power laws observed in many real networks. Preferential attachment has
been directly validated for some real networks, including the Internet.
Preferential attachment can also be a consequence of different underlying
processes based on node fitness, ranking, optimization, random walks, or
duplication. Here we show that popularity is just one dimension of
attractiveness. Another dimension is similarity. We develop a framework where
new connections, instead of preferring popular nodes, optimize certain
trade-offs between popularity and similarity. The framework admits a geometric
interpretation, in which popularity preference emerges from local optimization.
As opposed to preferential attachment, the optimization framework accurately
describes large-scale evolution of technological (Internet), social (web of
trust), and biological (E.coli metabolic) networks, predicting the probability
of new links in them with a remarkable precision. The developed framework can
thus be used for predicting new links in evolving networks, and provides a
different perspective on preferential attachment as an emergent phenomenon
Quadratic optimal functional quantization of stochastic processes and numerical applications
In this paper, we present an overview of the recent developments of
functional quantization of stochastic processes, with an emphasis on the
quadratic case. Functional quantization is a way to approximate a process,
viewed as a Hilbert-valued random variable, using a nearest neighbour
projection on a finite codebook. A special emphasis is made on the
computational aspects and the numerical applications, in particular the pricing
of some path-dependent European options.Comment: 41 page
Why Are Male Social Relationships Complex in the Doubtful Sound Bottlenose Dolphin Population?
Copyright 2008 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
Characterization of complex networks: A survey of measurements
Each complex network (or class of networks) presents specific topological
features which characterize its connectivity and highly influence the dynamics
of processes executed on the network. The analysis, discrimination, and
synthesis of complex networks therefore rely on the use of measurements capable
of expressing the most relevant topological features. This article presents a
survey of such measurements. It includes general considerations about complex
network characterization, a brief review of the principal models, and the
presentation of the main existing measurements. Important related issues
covered in this work comprise the representation of the evolution of complex
networks in terms of trajectories in several measurement spaces, the analysis
of the correlations between some of the most traditional measurements,
perturbation analysis, as well as the use of multivariate statistics for
feature selection and network classification. Depending on the network and the
analysis task one has in mind, a specific set of features may be chosen. It is
hoped that the present survey will help the proper application and
interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of
measurements for inclusion are welcomed by the author
A Novel BMPR2 Mutation Associated with Pulmonary Arterial Hypertension in an Octogenarian
We describe the case of an 83-year-old man with a family history of pulmonary hypertension (PH) who presented with severe pulmonary arterial hypertension (PAH) and later tested positive for a novel bone morphogenetic protein receptor 2 (BMPR2) gene mutation. To our knowledge, this may be the oldest reported patient with PAH in whom a BMPR2 mutation was initially identified
Genetic noise control via protein oligomerization
Gene expression in a cell entails random reaction events occurring over
disparate time scales. Thus, molecular noise that often results in phenotypic
and population-dynamic consequences sets a fundamental limit to biochemical
signaling. While there have been numerous studies correlating the architecture
of cellular reaction networks with noise tolerance, only a limited effort has
been made to understand the dynamic role of protein-protein interactions. Here
we have developed a fully stochastic model for the positive feedback control of
a single gene, as well as a pair of genes (toggle switch), integrating
quantitative results from previous in vivo and in vitro studies. We find that
the overall noise-level is reduced and the frequency content of the noise is
dramatically shifted to the physiologically irrelevant high-frequency regime in
the presence of protein dimerization. This is independent of the choice of
monomer or dimer as transcription factor and persists throughout the multiple
model topologies considered. For the toggle switch, we additionally find that
the presence of a protein dimer, either homodimer or heterodimer, may
significantly reduce its random switching rate. Hence, the dimer promotes the
robust function of bistable switches by preventing the uninduced (induced)
state from randomly being induced (uninduced). The specific binding between
regulatory proteins provides a buffer that may prevent the propagation of
fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization
per se does not require extra protein components to be expressed, it provides a
basis for the rapid control of intrinsic or extrinsic noise
- …