31,880 research outputs found

    Large-scale structure of time evolving citation networks

    Full text link
    In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network, and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.Comment: 10 pages, 6 figures; journal names for 4 references fixe

    Statistics of Certain Models of Evolution

    Get PDF
    In a recent paper, Newman surveys the literature on power law spectra in evolution, self-organised criticality and presents a model of his own to arrive at a conclusion that self-organised criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organised critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organised critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species remains constant. It turns out that the requirement of constant species number is non-trivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organise to a state where the long time average of speciations balances that of the extinctions, otherwise the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counter example to the presence of self-organised criticality in evolution, but does provide a simple, almost analytic model that can used to understand more intricate models such as Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio

    Small But Slow World: How Network Topology and Burstiness Slow Down Spreading

    Full text link
    Communication networks show the small-world property of short paths, but the spreading dynamics in them turns out slow. We follow the time evolution of information propagation through communication networks by using the SI model with empirical data on contact sequences. We introduce null models where the sequences are randomly shuffled in different ways, enabling us to distinguish between the contributions of different impeding effects. The slowing down of spreading is found to be caused mostly by weight-topology correlations and the bursty activity patterns of individuals

    Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    Get PDF
    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness

    A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity

    Get PDF
    We prove the existence of a class of plane symmetric perfect-fluid cosmologies with a (-1/3, 2/3, 2/3) Kasner-like singularity. These solutions of the Einstein equations depend on two smooth functions of one space coordinate. They are constructed by solving a symmetric hyperbolic system of Fuchsian equations.Comment: LaTeX, 15 pages, no figures, to appear in CQG, correction to existence proo

    The 4-D Layer Phase as a Gauge Field Localization: Extensive Study of the 5-D Anisotropic U(1) Gauge Model on the Lattice

    Get PDF
    We study a 4+1 dimensional pure Abelian Gauge model on the lattice with two anisotropic couplings independent of each other and of the coordinates. A first exploration of the phase diagram using mean field approximation and monte carlo techniques has demonstrated the existence of a new phase, the so called Layer phase, in which the forces in the 4-D subspace are Coulomb-like while in the transverse direction (fifth dimension) the force is confining. This allows the possibility of a gauge field localization scheme. In this work the use of bigger lattice volumes and higher statistics confirms the existence of the Layer phase and furthermore clarifies the issue of the phase transitions' order. We show that the Layer phase is separated from the strongly coupled phase by a weak first order phase transition. Also we provide evidence that the Layer phase is separated by the five-dimensional Coulomb phase with a second order phase transition and we give a first estimation of the critical exponents.Comment: 19 pages, 16 figure

    Developing collaborative partnerships with culturally and linguistically diverse families during the IEP process

    Full text link
    Family participation in the special education process has been federally mandated for 40 years, and educators recognize that effective collaboration with their students’ families leads to improved academic and social outcomes for students. However, while some family-school relationships are positive and collaborative, many are not, particularly for culturally and linguistically diverse (CLD) families. This article provides practice guidelines based in research for teachers who seek to improve their practices when working with CLD families who have children served by special education

    Limit curve theorems in Lorentzian geometry

    Full text link
    The subject of limit curve theorems in Lorentzian geometry is reviewed. A general limit curve theorem is formulated which includes the case of converging curves with endpoints and the case in which the limit points assigned since the beginning are one, two or at most denumerable. Some applications are considered. It is proved that in chronological spacetimes, strong causality is either everywhere verified or everywhere violated on maximizing lightlike segments with open domain. As a consequence, if in a chronological spacetime two distinct lightlike lines intersect each other then strong causality holds at their points. Finally, it is proved that two distinct components of the chronology violating set have disjoint closures or there is a lightlike line passing through each point of the intersection of the corresponding boundaries.Comment: 25 pages, 1 figure. v2: Misprints fixed, matches published versio
    • 

    corecore