7,173 research outputs found

    Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    Get PDF
    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach

    An evaluation of the pressure proof test concept for thin sheet 2024-T3

    Get PDF
    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures

    The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective

    Get PDF
    The seventh Jerry L. Swedlow Memorial Lecture presents a review of some of the technical developments, that have occurred during the past 40 years, which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of 'crack propagation.' As methods to observe the 'fatigue' process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by 'crack size.' In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading, conditions. These mechanisms have also provided a rationale for developing, new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified 'fatigue' and 'fracture mechanics' concepts; and has bridged the cap between safe-life and durability/damage-tolerance design concepts

    TAILORED ADAPTIVE PERSONALITY ASSESSMENT SYSTEM (TAPAS) EXAM ABILITY TO PREDICT PROFICIENCY AND PERFORMANCE AMONG NAVAL ACADEMY PRODUCED MARINE CORPS OFFICERS

    Get PDF
    Approximately 25% of the midshipmen who graduate from the United States Naval Academy (USNA) receive a commission in the United States Marine Corps. The selection process examines a midshipman’s academic, leadership, and physical performance during their time at USNA, along with a Marine-led summer training called Leatherneck. We examine Tailored Adaptive Personality Assessment System (TAPAS) scores obtained during Leatherneck to determine if facets can improve the Marine Corps service assignment selection process. In addition, we examine individual facets to determine if they predict The Basic School (TBS) performance for USNA-produced Marine Officers. We found that adding TAPAS to data that the Marine Detachment (MarDet) considers for the selection process is likely to provide only a meager improvement. However, there are several TAPAS facets, such as optimism and academic achievement, that are positively correlated to performance at TBS, as well as sociability, which is negatively correlated to performance at TBS. Furthermore, combining the TAPAS data with existing selection metrics for the MarDet, we see an impact in the ranking positions for USNA-produced officers at TBS. While the data is significant, we recommend further studies to determine the full extent that TAPAS supports predicting performance for officers at TBS and potentially the success of Fleet Marine Force.Captain, United States Marine CorpsCaptain, United States Marine CorpsApproved for public release. Distribution is unlimited

    ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    Get PDF
    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program

    High-Order Stabilized Finite Elements on Dynamic Meshes

    Get PDF
    The development of dynamic mesh capability for turbulent flow simulations using the Streamlined Upwind Petrov-Galerkin (SUPG) discretization is described. The current work extends previous research to include high-order spatial accuracy, including the satisfaction of the discrete geometric conservation law (GCL) on curved elements. Two closely-related schemes are described and the ability of these schemes to satisfy the GCL, while also maintaining temporal accuracy and conservation is assessed. Studies indicate that although one scheme discretizes the time derivative in conservative form, both schemes exhibit temporal conservation errors that decrease according to the expected design order of accuracy. The source of the temporal conservation errors is examined, and it is demonstrated that many finite-volume and finite-element schemes can also be expected to have difficulty strictly satisfying conservation in time. The effects on conservation are examined and, while present in the simulations, are seen to be negligible for the problems considered

    Screening and Referral for Postpartum Depression among Low-Income Women: A Qualitative Perspective from Community Health Workers

    Get PDF
    Postpartum depression is a serious and common psychiatric illness. Mothers living in poverty are more likely to be depressed and have greater barriers to accessing treatment than the general population. Mental health utilization is particularly limited for women with postpartum depression and low-income, minority women. As part of an academic-community partnership, focus groups were utilized to examine staff practices, barriers, and facilitators in mental health referrals for women with depression within a community nonprofit agency serving low-income pregnant and postpartum women. The focus groups were analyzed through content analyses and NVIVO-8. Three focus groups with 16 community health workers were conducted. Six themes were identified: (1) screening and referral, (2) facilitators to referral, (3) barriers to referral, (4) culture and language, (5) life events, and (6) support. The study identified several barriers and facilitators for referring postpartum women with depression to mental health services

    Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    Get PDF
    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered

    Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    Get PDF
    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry

    Stabilized Finite Elements in FUN3D

    Get PDF
    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence
    corecore