940 research outputs found
From the microbiome to the central nervous system, an update on the epidemiology and pathogenesis of bacterial meningitis in childhood [version 1; referees: 3 approved]
In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis
Gates to Gregg High Voltage Transmission Line Study
The usefulness of LANDSAT data in the planning of transmission line routes was assessed. LANDSAT digital data and image processing techniques, specifically a multi-date supervised classification aproach, were used to develop a land cover map for an agricultural area near Fresno, California. Twenty-six land cover classes were identified, of which twenty classes were agricultural crops. High classification accuracies (greater than 80%) were attained for several classes, including cotton, grain, and vineyards. The primary products generated were 1:24,000, 1:100,000 and 1:250,000 scale maps of the classification and acreage summaries for all land cover classes within four alternate transmission line routes
Development and application of an antibiotic spectrum index for benchmarking antibiotic selection patterns across hospitals
Standard metrics for antimicrobial use consider volume but not spectrum of antimicrobial prescribing. We developed an antibiotic spectrum index (ASI) to classify commonly used antibiotics based on activity against important pathogens. The application of this index to hospital antibiotic use reveals how this tool enhances current antimicrobial stewardship metrics.Infect Control Hosp Epidemiol 2017;38:993–997</jats:p
A new analysis of debris mitigation and removal using networks
Modelling studies have shown that the implementation of mitigation guidelines, which aim to reduce the amount of new debris generated on-orbit, is an important requirement of future space activities but may be insufficient to stabilise the near-Earth debris environment. The role of a variety of mitigation practices in stabilising the environment has been investigated over the last decade, as has the potential of active debris removal (ADR) methods in recent work. We present a theoretical approach to the analysis of the debris environment that is based on the study of networks, composed of vertices and edges, which describe the dynamic relationships between Earth satellites in the debris system. Future projections of the 10 cm and larger satellite population in a non-mitigation scenario, conducted with the DAMAGE model, are used to illustrate key aspects of this approach. Information from the DAMAGE projections are used to reconstruct a network in which vertices represent satellites and edges encapsulate conjunctions between collision pairs. The network structure is then quantified using statistical measures, providing a numerical baseline for this future projection scenario. Finally, the impact of mitigation strategies and active debris removal, which can be mapped onto the network by altering or removing edges and vertices, can be assessed in terms of the changes from this baseline. The paper introduces the network methodology, highlights the ways in which this approach can be used to formalise criteria for debris mitigation and removal. It then summarises changes to the adopted network that correspond to an increasing stability and changes that represent a decreasing stability of the future debris environment
Further investigations into the single metal deposition (SMD II) technique for the detection of latent fingermarks
Single metal deposition (SMD II), a recently proposed method for the development of latent fingermarks, was investigated by systematically altering aspects of the procedure to assess their effect on the level of development and contrast achieved. Gold nanoparticle size, temperature of the deposition solution bath, and orbital shaking during detection were shown to affect the levels of development and contrast obtained. Gold nanoparticles of diameter 15–21 nm were found to be most effective for satisfactory visualisation of latent fingermarks, while solutions that were applied at room temperature were found to adequately balance the ratio between the contrast of the fingermark ridge detail and the level of background staining achieved. Finally, optimum levels of development and contrast were obtained through constant agitation of both solution baths at approximately 50 RPM throughout the submersion time. SMD II was also tested on a large variety of substrate types and shown to be effective on a range of porous, non-porous, and semi-porous surfaces; however, the detection quality can be significantly influenced by the substrate nature. This resulted in the production of dark grey, white, or gold coloured fingermarks on different surfaces, as well as reversed detection on certain types of plastic, similarly seen through the use of vacuum metal deposition. © 2016 Elsevier Ireland Lt
Variability in antifungal and antiviral use in hospitalized children
We analyzed antifungal and antiviral prescribing among high-risk children across freestanding children’s hospitals. Antifungal and antiviral days of therapy varied across hospitals. Benchmarking antifungal and antiviral use and developing antimicrobial stewardship strategies to optimize use of these high cost agents is needed.Infect Control Hosp Epidemiol2017;38:743–746</jats:p
- …