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REVIEW

From the microbiome to the central nervous system, an update
on the epidemiology and pathogenesis of bacterial meningitis in

 childhood [version 1; referees: 3 approved]
Andrew B Janowski, Jason G Newland
Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA

Abstract
In the past century, advances in antibiotics and vaccination have dramatically
altered the incidence and clinical outcomes of bacterial meningitis. We review
the shifting epidemiology of meningitis in children, including after the
implementation of vaccines that target common meningitic pathogens and the
introduction of intrapartum antibiotic prophylaxis offered to mothers colonized
with . We also discuss what is currently known aboutStreptococcus agalactiae
the pathogenesis of meningitis. Recent studies of the human microbiome have
illustrated dynamic relationships of bacterial and viral populations with the host,
which may potentiate the risk of bacterial meningitis.
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Introduction
At the turn of the 20th century, bacterial meningitis was an  
almost universally fatal disease. Two important medical advances—
antibiotics and vaccination—have dramatically decreased the inci-
dence and the case fatality rate of bacterial meningitis, particularly 
within pediatric populations. Some of the pathogens that caused 
meningitis 20 years ago are now more likely to be encountered 
by medical trainees in reviewing textbooks than in clinical prac-
tice. With these shifting dynamics, a greater understanding of the  
current epidemiology of community-acquired meningitis is needed. 
In addition, several pathways involved in the pathogenesis of  
bacterial meningitis have been elucidated. We review some of these 
models and provide an update on the role of the microbiome in the 
development of meningitis.

Overview of the epidemiology of bacterial meningitis 
in childhood
Traditional descriptions of bacterial meningitis in childhood have 
stratified causative pathogens on the basis of age, as there is a 
stark contrast in the bacterial pathogens that cause meningitis in 
newborns compared with older children. Meningitis in children 
older than 60 days, called “pediatric bacterial meningitis” in this 
review, is often caused by encapsulated bacteria that colonize the  
nasopharynx and other body sites. Meningitis in children younger 
than 60 days, called “young infant bacterial meningitis” in 
this review, is further stratified by gestational age and timing of  
onset of infection1. In general, infections that occur within the first 
7 days of life of a term neonate are described as early onset dis-
ease, whereas infections occurring from 7 to 60 days after birth 
are described as late-onset disease1. Early onset disease is caused 
predominantly by bacteria transmitted at the time of parturition, 
whereas late-onset disease is caused by members of the micro-
biome transmitted at birth or through exposures after birth, such 
as maternal contact or method of feeding1–5. Despite the distinc-
tions in pathogens between the age cohorts, pathogens of pediatric  
bacterial meningitis can also cause disease in young infants and 
vice versa.

Pediatric bacterial meningitis
For over 30 years, the Centers for Disease Control and Preven-
tion (CDC) in the US has published surveillance data of bacterial 
meningitis. In 1995, the CDC established the Active Bacterial Core 
Surveillance, an active monitoring system for invasive pathogens, 
and since then has made annual reports available to the public  
(http://www.cdc.gov/abcs/reports-findings/surv-reports.html). The 
epidemiology of meningitis in the US has profoundly changed  
over the past several decades. In 1978–1981, Haemophilus  
influenzae was the most frequent cause of meningitis (48.3% 
of cases), followed by Neisseria meningitidis (19.6%) and 
Streptococcus pneumoniae (13.3%)6. By 2014, in children 
under age 5 in the US, S. pneumoniae was the most frequently  
identified pathogen whereas H. influenzae was rarely detected7.

Although S. pneumoniae is the most frequent etiology of bacterial 
meningitis in the US, the incidence of pneumococcal meningitis has 
dramatically decreased over the past two decades because of the 
implementation of pneumococcal serotype vaccines (Figure 1a)8.  
In 2000, a seven-valent pneumococcal vaccine (PCV7) targeting a 

subset of serotypes associated with invasive disease was licensed 
in the US8. After the introduction of PCV7, the rate of invasive dis-
ease caused by PCV7 serotypes fell from 80 per 100,000 population 
in 2000 to below one per 100,000 population in 20079. Meningi-
tis caused by PCV7 serotypes also significantly decreased, from 
8.2 cases per 100,000 in 1998–1999 to 0.59 cases per 100,000 in 
2004–200510. Substantial reductions in invasive pneumococcal 
infections were also observed in other countries after implemen-
tation of the PCV7 vaccine11,12. However, surveillance data iden-
tified a rise in the incidence of meningitis caused by serotypes 
not included in the vaccine, known as serotype replacement13,  
prompting the development of a 13-valent pneumococcal vaccine 
(PCV13) licensed in the US in 2010. Since the implementation 
of PCV13 in several countries, continued decreases in invasive  
S. pneumoniae diseases have been observed (Figure 1a)14–20.  
However, there are conflicting data as to whether the introduction  
of PCV13 has decreased the rate of S. pneumoniae meningitis20–22.

The dramatic reduction in the incidence of H. influenzae  
meningitis demonstrates the tremendous success of the serotype  
B vaccine23. H. influenzae type B is a highly virulent strain that 
caused the majority of H. influenzae meningitis cases23,24. In  
1978–1981, the peak incidence of H. influenzae meningitis was in 
infants 9 to 11 months of age, and the attack rate was 70 cases 

Figure 1. Rates of (a) invasive disease for Streptococcus  
pneumoniae in children under the age of 5 and (b) invasive disease 
caused by Haemophilus influenzae in children under the age 
of 5 and by Neisseria meningitides in all ages. All data are from 
accumulated Centers for Disease Control and Prevention (CDC) 
Active Bacterial Core surveillance reports 1997–2014 (http://www.
cdc.gov/abcs/reports-findings/surv-reports.html).
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of meningitis per 100,000 population per year6. In the 1980s, sev-
eral H. influenzae type B vaccines were in development; among 
them were an unconjugated polysaccharide formulation licensed 
in the US in 1985 and the conjugate vaccine licensed in the US 
in 1987. Implementation of the vaccines caused a rapid decline in  
H. influenzae disease; by 2014, the CDC identified only 40 inva-
sive cases of H. influenzae type B infection, representing an inva-
sive disease rate of 0.19 per 100,000 US children under the age 
of 5 (Figure 1b)25–27. Similar analyses in other countries have also  
demonstrated a significant reduction of H. influenzae meningitis 
after implementation of the type B vaccine11,12,28.

For N. meningitidis, 13 serogroups are currently known and  
only six serogroups are recognized to cause meningitis (A, B, C, 
W-135, X, and Y)29. During 1978–1981 in the US, the highest rate 
of N. meningitidis-associated meningitis was in children aged 3 
to 5 months, with over 10 cases per 100,000 population per year6. 
Over the next 25 years, the incidence of meningitis caused by  
N. meningitidis decreased in the US and this was hypothesized 
to be due to a combination of environmental, organism, and 
host factors (Figure 1b)30. In 2005, the meningococcal conjugate  
quadrivalent vaccine (MenACWY) targeting serogroups A, C, 
Y, and W-135 was licensed for use in adolescents in the US.  
Further reductions in disease have been observed after imple-
mentation of the vaccine; in 2014, meningococcemia occurred in 
0.14 cases per 100,000 persons in the US, representing a total of 
443 invasive cases27. Infants under a year of age have the highest 
incidence of meningitis from N. meningitidis; an estimated 2.74  
cases of meningitis per 100,000 occurred in the US from 2006 to 
201231. From that same study, serogroup B caused 64% of cases 
of meningitis, serogroup Y caused 16%, and serogroup C caused 
12%31. Similar reductions in N. meningitidis-associated diseases 
have been observed in other countries after the implementation of 
vaccination strategies12,32,33. N. meningitidis is a well-known cause 
of meningitis epidemics in the sub-Saharan region of Africa, where 
attack rates are as high as 800 cases per 100,000 population34,35. 
Serogroup A accounts for 80–85% of all outbreak cases, and many 
global efforts in distributing vaccines to epidemic regions of Africa 
have significantly reduced the incidence of meningitis35,36.

Young infant bacterial meningitis
In older studies, Streptococcus agalactiae (Group B Streptococcus, 
or GBS) was the most frequently identified pathogen from cases 
of young infant bacterial meningitis, followed in incidence by  
other organisms, including Escherichia coli and Listeria  
monocytogenes37–42. In a 2014 study from the UK and Ireland, 
GBS remained the most common cause of meningitis despite inter-
ventions to reduce disease caused by this organism43. This result 
contrasts with a 2014 study of young infants in California, where  
E. coli was the most frequently identified pathogen in meningi-
tis44. Other recent studies have described the importance of enteric 
Gram-negative organisms causing meningitis in this age group, 
while the incidence of meningitis caused by L. monocytogenes has 
decreased44–46.

The primary reason behind the shift in the epidemiology in the  
US has been the implementation of intrapartum antibiotic  
prophylaxis against GBS39,47,48. The CDC, the American Academy 

of Pediatrics, and the American College of Obstetricians and  
Gynecologists published unified prophylaxis guidelines in 1996, 
screening guidelines in 2002, and revised guidelines in 201049–55. 
Pregnant mothers are screened for rectovaginal colonization at 35 
to 37 weeks’ gestation for GBS, and colonized mothers are pro-
vided with intrapartum antibiotic prophylaxis52–54. Additionally, 
intrapartum antibiotics are indicated for mothers if they have a 
previous infant with invasive GBS disease, history of GBS bac-
teriuria, or unknown GBS status with at least one of the follow-
ing: delivery at less than 37 weeks’ gestation, amniotic membrane 
rupture of at least 18 hours, fever, or an intrapartum nucleic acid 
amplification test (NAAT) positive for GBS55. Efficacy of reducing 
transmission is enhanced if a beta-lactam or cephalosporin antibi-
otic is given at least 4 hours prior to delivery56,57. This intervention 
has dramatically reduced the rates of early onset sepsis from GBS, 
including meningitis (Figure 2a)48. However, intrapartum prophy-
laxis has not reduced the rate of late-onset GBS invasive disease  
(Figure 2a)48,58,59. Multiple factors likely contribute to the unchanged 
incidence of GBS late-onset disease, as intrapartum antibiotics 
reduce but do not abrogate GBS colonization, and transmission of 
GBS after birth may also occur through maternal, nosocomial, or 
environmental contacts3,59.

The overall incidence of meningitis and sepsis from E. coli has 
remained relatively stable in term infants since the implementation 
of GBS prophylaxis guidelines in the US and France60–64. However, 

Figure 2. Rates of invasive young infant infections in the United 
States. (a) Early onset Group B Streptococcus (GBS) disease data  
for 1990 to 1998 are from 47 and for 1999 to 2014 are from 
accumulated Centers for Disease Control and Prevention (CDC) 
Active Bacterial Core surveillance reports. Late-onset GBS 
disease data for 1992–2005 are from 59 and for 2006–2014 are 
from accumulated CDC Active Bacterial Core surveillance reports.  
(b) Listeria data are from 82.
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trends of increasing frequency of disease in select subgroups have 
been described, including an increase of E. coli early onset sepsis in 
preterm or very-low-birth-weight neonates1,64–66. The incidence of 
late-onset disease from E. coli has also increased in term or preterm 
infants1,64–66. E. coli isolated from cases of meningitis is frequently 
resistant to ampicillin45,60, but an increase in ampicillin-resistant 
E. coli has been observed only in low-birth-weight or premature 
infants60,67–69. Recent analyses of the infant gastrointestinal micro-
biome have identified the presence of many antibiotic-resistance 
genes, but it is not known why the frequency of resistant E. coli 
invasive disease has not increased in all young infants during the 
period of intrapartum prophylaxis70–74.

Previously in the US, L. monocytogenes was a common cause 
of neonatal meningitis, but in 2014 only 13 cases of meningitis 
and 37 cases of bacteremia were reported in neonates75. Based 
on the birth data for the US in 2014 (3,988,076 total births), the  
50 cases of neonatal listeriosis would translate to a rate of 
1.25 invasive cases per 100,000 births. This is in stark contrast  
to 17.4 invasive cases per 100,000 births in 1989, which decreased 
to 8.6 cases per 100,000 births by 199376. Increased safety in food 
product handling was the major driving force in the reduction of 
cases in the US during the 1980s and 1990s77–79. By 2004–2009, 
seven cases per 100,000 births on average were complicated by 
L. monocytogenes infection, according to estimates calculated 
by using data from Silk et al.80 and the US birth rate81. The GBS  
intrapartum prophylaxis recommendations may have contributed 
to the reduction of listeriosis, as the primary antibiotics used for 
prophylaxis—penicillin G and ampicillin—have excellent activity 
against L. monocytogenes82. Supporting this hypothesis are reduced 
rates of invasive disease in infants under 30 days of life identified 
from the Pediatric Health Information System, a database that  

uses pediatric discharge data from 45 tertiary pediatric hospitals in 
the US82. A total of 6.87 listeria cases per 10,000 patients occurred 
in 1992 compared with 0.33 cases per 10,000 patients in 2013, 
and this correlated with the reduction in GBS invasive diseases  
(Figure 2b)82.

Pathogenesis of meningitis
The pathogenesis of bacterial meningitis is often characterized by 
four primary processes: (1) colonization of the epithelial barrier, 
(2) entrance into the circulatory system, (3) breeching of the blood-
brain barrier (BBB), and (4) central nervous system (CNS) inflam-
mation and injury (Figure 3)83–86.

Epithelial surfaces in humans are the interface in which com-
plex interactions develop among the host, environment, and 
diverse populations of organisms. S. pneumoniae, H. influenzae,  
N. meningitidis, and many other bacterial organisms colonize the 
nasopharyngeal tract, being freely exchanged by aerosolization 
and contact with secretions87,88. Although these organisms col-
lectively inhabit the nasopharynx, this colonization is not neces-
sarily a peaceful co-inhabitation between organisms; rather it is 
an evolving balance among mutualism, competition, and outright 
antagonism. S. pneumoniae can produce hydrogen peroxide that 
causes a rapid decrease in the growth of H. influenzae89. Likewise, 
H. influenzae type B can induce an immune response that selec-
tively targets S. pneumoniae while leaving H. influenzae colonies 
unscathed90,91. Vaccination efforts have also altered the composition 
of the nasopharyngeal microbiome and have altered the epidemi-
ology of acute otitis media92,93. Ultimately, there are many inter-
bacterial interactions in the nasopharynx, and further investigation 
may reveal compositions of the microbiome that modify the risk of 
meningitis92,94,95.

Figure 3. Four generalized steps are involved in the pathogenesis of bacterial meningitis. (1) Bacterial colonization of the epithelial 
border. Colonization is affected by the host and other members of the microbiome, including bacteria and viruses (virome). Bacteria may 
have synergistic or antagonistic effects on colonization, while viruses may enhance colonization. (2) Bacterial invasion of the epithelial surface 
into the bloodstream. This process can be enhanced by viruses. (3) Bacterial breeching of the blood-brain barrier. Various pathways have 
been described in the penetration of the blood-brain barrier, including transcellular, paracellular, and “Trojan horse” mechanisms of entry.  
(4) Bacterial replication in the central nervous system. The release of bacterial products causes direct toxicity to neurons and stimulation of 
the immune response, which contributes to additional neurotoxicity.
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Interactions with the host are not limited to the bacterial domain, 
as co-inhabitation of specific viruses with bacteria led to synergis-
tic relationships88. Viruses can contribute to bacterial adherence to  
epithelial surfaces through viral factors and upregulation of host 
adhesion proteins88. Viruses also can contribute to the bacterial 
invasion of the epithelial surfaces by causing disruption of the 
epithelial barrier and by impairing the immune response88,96–98.  
Associations between viral infection and meningitis have been 
observed, and these associations may partially explain outbreaks  
or seasonality of meningitis99–103.

Most of the bacterial pathogens of young infant and pediat-
ric meningitis contain a polysaccharide capsule that contrib-
utes to invasion of the epithelial surface and survival in the  
bloodstream48,84,104–109. The capsule is an important virulence fac-
tor that confers added protection from phagocytosis, complement 
pathways, and penetration of the epithelium and BBB48,84,85,110–112.  
Children with antibody deficiencies, defects of the complement 
pathway, or asplenia are at particular risk from invasive disease of 
these pathogens because of their diminished ability to target and 
clear encapsulated pathogens from the bloodstream113.

Bacterial pathogens most often reach the BBB via the bloodstream. 
A threshold of bacteremia contributes to the breeching of the BBB, 
as a higher quantity of bacteria in the bloodstream is associated 
with increased risk of developing meningitis104,114–117. Various  
mechanisms of bacterial factors have been established in the pen-
etration of the BBB. The capsule can aid in bacterial transcellular 
crossing of the BBB, along with other attachment proteins83–85,104,118. 
Other mechanisms of crossing the BBB, including paracellular 
pathways or the “Trojan horse” mechanism of infected phagocytes, 
have been identified83–85,104. Meningitis can also occur through  
direct compromise of the BBB, and mechanisms include penetrat-
ing injuries, congenital defects, adjacent infections with erosion 
into the CNS, or neurosurgical procedures119–125.

Upon entry of bacterial pathogens into the CNS, they rapidly  
divide, as the CNS is devoid of complement, antibodies, and 
opsonic proteins85,86. The immune response is activated by Toll-
like receptors and Nod-like receptors recognizing pathogen- 
associated molecular patterns126,127. These signaling pathways lead 
to the production of proinflammatory cytokines and mobilization 
of the immune response, leading to pleocytosis of white blood  
cells83–86,126. Bacterial cell wall material, enzymes, and toxins cause 
direct injury to neurons and indirect damage by increasing vascu-
lar permeability that causes edema and further injury83–86. Neuronal 
injury is also caused by toxic molecules released by the immune 
response, including reactive oxygen species, nitrous oxide, and  
peroxynitrite84–86. The release of proteases and excitatory amino 
acids by the immune response also contributes to neurotoxicity84–86.

Special considerations of young infant meningitis
Inoculation of bacteria into mucosal surfaces occurs prior to 
and during parturition with subsequent bacterial invasion caus-
ing early onset sepsis48. Late-onset sepsis is associated with a 
period of asymptomatic bacterial colonization and subsequent  

invasion3–5. Two sites of colonization likely contribute to cases of 
late-onset meningitis. The gastrointestinal tract serves as a frequent 
site of colonization for E. coli, GBS, and L. monocytogenes, and 
all of these pathogens have essential factors that allow for epithe-
lial adherence and invasion48,85,128. GBS is readily transmitted from 
mother to neonate; 29–85% (mean rate of approximately 50%) of 
infants born to a GBS-positive mother become colonized48. The 
second potential site of colonization is the urinary tract, which may 
harbor asymptomatic bacteriuria129,130. Ascending infection can lead 
to seeding of the kidney, bacteremia, and then meningitis, as around 
13.2% of febrile young infants will present with a urinary tract 
infection, and a smaller subset will have simultaneous evidence of 
bacteriuria, bacteremia, and meningitis44,131.

In premature infants, bacteremic events can be preceded by  
colonization of the gut by the causative pathogen132. In a prospec-
tive monitoring of stool samples, Carl et al. captured seven cases 
of sepsis in which the causative bacterial pathogen was also iden-
tified from the patient’s stool sample preceding the episode of  
bacteremia132. It is unclear whether similar events occur in term 
infants or within other body sites that contribute to invasion of these 
bacterial organisms. The effects of intrapartum antibiotics on the 
infant microbiome are also being elucidated, as the gastrointesti-
nal microbiome of infants born to mothers who received intrapar-
tum antibiotics is different from that of infants born to untreated  
mothers133–136. However, the consequences, if any, of these micro-
bial communities for the risk of meningitis are unknown.

Recent analysis of the microbiome has shown dynamic coloniza-
tion of the neonatal gut, and one potential factor in colonization is 
the population of bacteriophages137,138. In a longitudinal study of 
healthy twins, the neonatal bacterial microbiome gained bacterial 
diversity with increased age, and conversely bacteriophage diver-
sity decreased with age137. This may suggest an essential relation-
ship between bacteriophages and development of the gut bacterial 
microbiome, in which the bacteriophage population guides the 
diversity of the bacterial population. Further data are needed to 
determine whether the risk of invasive bacterial disease is increased 
by certain compositions of the microbiome and whether bacteri-
ophage populations potentiate this risk139.

The relatively immature immune system of the neonate also  
contributes to the invasive risk of bacterial pathogens140–142.  
Defects in phagocytic cell function, chemotaxis, cytokine pro-
duction, complement pathways, Toll-like receptor responses, 
and antibody production are further conducive to invasive  
disease140–142. These defects also include adaptive immunity in 
response to viral infections, including lymphocyte proliferation 
and antibody responses142–144. Though significant, these immune  
defects are transient, likely contributing to the decreased inci-
dence of serious bacterial infections with increasing age.

Conclusions
The incidence of bacterial meningitis in children has been  
dramatically reduced and this is primarily because of immunization 
and intrapartum prophylaxis strategies. Nonetheless, E. coli, GBS, 
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S. pneumoniae, and N. meningitidis remain important pathogens 
of meningitis. Recent advances in the analysis of the microbiome 
have expanded the understanding of the pathogenesis of meningitis. 
These new insights will provide new avenues of research and may 
stimulate the development of future treatments to prevent and treat 
meningitis.
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