50 research outputs found
Riding on the wind: volatile compounds dictate selection of grassland seedlings by snails.
Background and Aims: Seedling herbivory is an important selective filter in many plant communities. The removal of preferred food plants by both vertebrate and, more commonly, invertebrate herbivores can destroy entire seedling cohorts, and consequently dictate plant community assembly. Nevertheless, our understanding of how and why some seedlings are more prone to herbivore attack than their neighbours remains limited. For seedlings, where even minor tissue damage is fatal, avoiding contact with herbivores is probably advantageous and, on this basis, volatile organic compounds (VOCs) are strong candidates to fulfil a primary defensive role. Methods: We quantified seedling selection by snails (Cornu aspersum) for 14 common, European grassland species. Seedling acceptability was subsequently compared with species-specific expression of constitutive secondary defence metabolites (CSDMs), and VOCs to determine their relative influence on seedling selection. Results: We found no relationship between seedling acceptability and CSDMs, but seedling selection was strongly associated with VOC profiles. Monoterpenes (specifically β-ocimene) were identified as likely attractants, while green leaf volatiles (GLVs) (3-hexen-1-ol acetate) were strongly associated with low seedling acceptability. Conclusions: By elucidating a relationship between VOCs and seedling acceptability, we contradict a long-held, but poorly tested, assumption that seedling selection by herbivores in (semi-)natural plant communities centres on CSDMs. Instead, our results corroborate recent work showing how GLVs, including 3-hexen-1-ol acetate, deter crop seedling selection by molluscs. Although our failure to establish any early-ontogenetic relationship between VOCs and CSDMs also suggests that the former do not 'advertise' possession of the latter, we nevertheless reveal the role that VOCs play in defending seedlings against herbivory before lethal damage occurs
Determinants of Bacteriophage 933W Repressor DNA Binding Specificity
We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein
Anesthesia advanced circulatory life support
The constellation of advanced cardiac life support (ACLS) events, such as gas embolism, local anesthetic overdose, and spinal bradycardia, in the perioperative setting differs from events in the pre-hospital arena. As a result, modification of traditional ACLS protocols allows for more specific etiology-based resuscitation.
Perioperative arrests are both uncommon and heterogeneous and have not been described or studied to the same extent as cardiac arrest in the community. These crises are usually witnessed, frequently anticipated, and involve a rescuer physician with knowledge of the patient's comorbidities and coexisting anesthetic or surgically related pathophysiology. When the health care provider identifies the probable cause of arrest, the practitioner has the ability to initiate medical management rapidly.
Recommendations for management must be predicated on expert opinion and physiological understanding rather than on the standards currently being used in the generation of ACLS protocols in the community. Adapting ACLS algorithms and considering the differential diagnoses of these perioperative events may prevent cardiac arrest
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012
OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008.
DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development.
METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations.
RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C).
CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
Seismic air guns damage rock lobster mechanosensory organs and impair righting reflex
© 2019 The Author(s) Published by the Royal Society. All rights reserved.
The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts