294 research outputs found

    Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance

    Get PDF
    Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This Perspective develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases

    Coming of age: molecular drivers of aging and therapeutic opportunities

    Get PDF
    Aging is like the weather: everyone talks about it, but no one seems to do anything about it. We believe this may soon change, as an improved understanding of the molecular and genetic pathways underlying aging suggests it is possible to therapeutically target the aging process and increase health span. This Review series focuses on fundamental cellular mechanisms of aging and their relationship to human disease. These pathways include telomere dysfunction in cellular senescence and induction of the senescence-associated secretory phenotype (SASP) in systemic aging, sirtuin family regulation of metabolism and aging-associated diseases, mitochondrial metabolism in aging, the mechanistic target of rapamycin (mTOR) signaling pathway and the use of mTOR inhibitors to increase longevity, the progressive decline of the immune system with age, and aging-associated changes to pancreatic islet β cells that may contribute to diabetes. Together, these articles explore pathways affecting aging and possible interventional targets to slow or delay the onset of age-related pathologies

    Effect of Progressive Weight Loss on Lactate Metabolism: A Randomized Controlled Trial.

    Get PDF
    OBJECTIVE:Lactate is an intermediate of glucose metabolism that has been implicated in the pathogenesis of insulin resistance. This study evaluated the relationship between glucose kinetics and plasma lactate concentration ([LAC]) before and after manipulating insulin sensitivity by progressive weight loss. METHODS:Forty people with obesity (BMI = 37.9 ± 4.3 kg/m2 ) were randomized to weight maintenance (n = 14) or weight loss (n = 19). Subjects were studied before and after 6 months of weight maintenance and before and after 5%, 11%, and 16% weight loss. A hyperinsulinemic-euglycemic clamp procedure in conjunction with [6,6-2 H2 ]glucose tracer infusion was used to assess glucose kinetics. RESULTS:At baseline, fasting [LAC] correlated positively with endogenous glucose production rate (r = 0.532; P = 0.001) and negatively with insulin sensitivity, assessed as the insulin-stimulated glucose disposal (r = -0.361; P = 0.04). Progressive (5% through 16%) weight loss caused a progressive decrease in fasting [LAC], and the decrease in fasting [LAC] after 5% weight loss was correlated with the decrease in endogenous glucose production (r = 0.654; P = 0.002) and the increase in insulin sensitivity (r = -0.595; P = 0.007). CONCLUSIONS:This study demonstrates the interrelationships among weight loss, hepatic and muscle glucose kinetics, insulin sensitivity, and [LAC], and it suggests that [LAC] can serve as an additional biomarker of glucose-related insulin resistance

    The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion.

    Get PDF
    Glucose-stimulated insulin secretion (GSIS) is mediated in part by glucose metabolism-driven increases in ATP/ADP ratio, but by-products of mitochondrial glucose metabolism also play an important role. Here we investigate the role of the mitochondrial citrate/isocitrate carrier (CIC) in regulation of GSIS. Inhibition of CIC activity in INS-1-derived 832/13 cells or primary rat islets by the substrate analogue 1,2,3-benzenetricarboxylate (BTC) resulted in potent inhibition of GSIS, involving both first and second phase secretion. A recombinant adenovirus containing a CIC-specific siRNA (Ad-siCIC) dose-dependently reduced CIC expression in 832/13 cells and caused parallel inhibitory effects on citrate accumulation in the cytosol. Ad-siCIC treatment did not affect glucose utilization, glucose oxidation, or ATP/ADP ratio but did inhibit glucose incorporation into fatty acids and glucose-induced increases in NADPH/NADP+ ratio relative to cells treated with a control siRNA virus (Ad-siControl). Ad-siCIC also inhibited GSIS in 832/13 cells, whereas overexpression of CIC enhanced GSIS and raised cytosolic citrate levels. In normal rat islets, Ad-siCIC treatment also suppressed CIC mRNA levels and inhibited GSIS. We conclude that export of citrate and/or isocitrate from the mitochondria to the cytosol is an important step in control of GSIS

    Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men

    Get PDF
    We hypothesized that an increased, incomplete fatty acid beta‐oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW men had higher C2 and C4‐OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta‐oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6‐DC, C10‐OH/C8‐DC, and total hydroxyl‐/dicarboxyl‐acylcarnitine levels, which may suggest an increased fatty acid omega‐oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10‐OH/C8‐DC and total hydroxyl‐/dicarboxyl‐acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl‐/dicarboxyl‐acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega‐oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling

    Plasma amino acid levels are elevated in young, healthy low birth weight men exposed to short-term high-fat overfeeding

    Get PDF
    Low birth weight (LBW) individuals exhibit a disproportionately increased, incomplete fatty acid oxidation and a decreased glucose oxidation, compared with normal birth weight (NBW) individuals, and furthermore have an increased risk of developing insulin resistance and type 2 diabetes. We hypothesized that changes in amino acid metabolism may occur parallel to alterations in fatty acid and glucose oxidation, and could contribute to insulin resistance. Therefore, we measured fasting plasma levels of 15 individual or pools of amino acids in 18 LBW and 25 NBW men after an isocaloric control diet and after a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW and NBW men increased plasma alanine levels and decreased valine and leucine/isoleucine levels in response to overfeeding. Also, LBW men had higher alanine, proline, methionine, citrulline, and total amino acid levels after overfeeding compared with NBW men. Alanine and total amino acid levels tended to be negatively associated with the insulin‐stimulated glucose uptake after overfeeding. Therefore, the higher amino acid levels in LBW men could be a consequence of their reduction in skeletal muscle insulin sensitivity due to overfeeding with a possible increased skeletal muscle proteolysis and/or could potentially contribute to an impaired insulin sensitivity. Furthermore, the alanine level was negatively associated with the plasma acetylcarnitine level and positively associated with the hepatic glucose production after overfeeding. Thus, the higher alanine level in LBW men could be accompanied by an increased anaplerotic formation of oxaloacetate and thereby an enhanced tricarboxylic acid cycle activity and as well an increased gluconeogenesis

    Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure

    Get PDF
    Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention
    • …
    corecore