2,628 research outputs found

    Method for making a heat insulating and ablative structure

    Get PDF
    Filling honeycomb matrix with deaerated paste fille

    Behavior Of Plants In Unventilated Chambers

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142325/1/ajb205503.pd

    Investing in Biodiversity Conservation: Proceedings of a Workshop

    Get PDF
    This document presents the proceedings of a one-day Workshop on Investing in Biodiversity Conservation held at the Inter-American Development Bank in Washington, D.C., on October 28, 1996. The first part of the workshop was dedicated to the presentation of key topics on biodiversity financing by five leaders in the field. The second part of the workshop was dedicated to a discussion and exchange of ideas on the role of the IDB in investing in biodiversity conservation. Three main recommendations emerged: 1) The Bank should prepare a report on on its experience in biodiversity projects and development programs with biodiversity components; 2) A task force should be formed to work on a bio-diversity policy or strategy; 3) IDB staff should be trained to understand the biodiversity concept and its implications in project preparation and implementation.Environmental Policy, Biodiversity, Natural Resources Management

    Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    Get PDF
    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation

    Robust whole-brain segmentation: Application to traumatic brain injury

    Get PDF
    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to differentiate subjects with the presence of a mass lesion or midline shift from those with diffuse brain injury with 76.0% accuracy. The thalamus, putamen, pallidum and hippocampus are particularly affected. Their involvement predicts TBI disease progression.This work was partially funded under the 7th Framework Programme by the European Commission (http://cordis.europa.eu/ist/, TBIcare: http://www.tbicare.eu/, last accessed: 8 December 2014). The research was further supported by the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. AH is supported by the Department of Health via the NIHR comprehensive BRC award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and Kings College Hospital NHS Foundation Trust. This work was further supported by a Medical Research Council (UK) Program Grant (Acute brain injury: heterogeneity of mechanisms, therapeutic targets and outcome effects [G9439390 ID 65883]), the UK National Institute of Health Research Biomedical Research Centre at Cambridge, the Technology Platform funding provided by the UK Department of Health and an EPSRC Pathways to Impact award. VFJN is supported by a Health Foundation/Academy of Medical Sciences Clinician Scientist Fellowship. DKM is supported by an NIHR Senior Investigator Award. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript

    Volatile and major element zonation within melt inclusions: A natural diffusion experiment

    Get PDF
    The diffusivities of volatile elements in silicate melts significantly impact petrological processes [e.g. 1, 2]. Although many studies of volatile diffusion in silicic melts have been undertaken, there have been few studies in basaltic melts [e.g. 3], and most of these have concentrated on the diffusion of only one or two elements in each experiment

    Self-repair ability of evolved self-assembling systems in cellular automata

    Get PDF
    Self-repairing systems are those that are able to reconfigure themselves following disruptions to bring them back into a defined normal state. In this paper we explore the self-repair ability of some cellular automata-like systems, which differ from classical cellular automata by the introduction of a local diffusion process inspired by chemical signalling processes in biological development. The update rules in these systems are evolved using genetic programming to self-assemble towards a target pattern. In particular, we demonstrate that once the update rules have been evolved for self-assembly, many of those update rules also provide a self-repair ability without any additional evolutionary process aimed specifically at self-repair

    Comparison of the collagen haemostat Sangustop(R) versus a carrier-bound fibrin sealant during liver resection; ESSCALIVER-study

    Get PDF
    Background: Haemostasis in liver surgery remains a challenge despite improved resection techniques. Oozing from blood vessels too small to be ligated necessitate a treatment with haemostats in order to prevent complications attributed to bleeding. There is good evidence from randomised trials for the efficacy of fibrin sealants, on their own or in combination with a carrier material. A new haemostatic device is Sangustop(R). It is a collagen based material without any coagulation factors. Pre-clinical data for Sangustop(R) showed superior haemostatic effect. This present study aims to show that in the clinical situation Sangustop(R) is not inferior to a carrier-bound fibrin sealant (Tachosil(R)) as a haemostatic treatment in hepatic resection. Methods: This is a multi-centre, patient-blinded, intra-operatively randomised controlled trial. A total of 126 patients planned for an elective liver resection will be enrolled in eight surgical centres. The primary objective of this study is to show the non-inferiority of Sangustop(R) versus a carrier-bound fibrin sealant (Tachosil(R)) in achieving haemostasis after hepatic resection. The surgical intervention is standardised with regard to devices and techniques used for resection and primary haemostasis. Patients will be followed-up for three months for complications and adverse events. Discussion: This randomised controlled trial (ESSCALIVER) aims to compare the new collagen haemostat Sangustop(R) with a carrier-bound fibrin sealant which can be seen as a "gold standard" in hepatic and other visceral organ surgery. If non-inferiority is shown other criteria than the haemostatic efficacy (e.g. costs, adverse events rate) may be considered for the choice of the most appropriate treatment. Trial Registration: NCT0091861
    corecore