1,990 research outputs found

    Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Get PDF
    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases

    Assessing the Risk of Disc Heniation Related to Landing Impact Following Long-duration Spacecraft

    Get PDF
    Previous research has shown that crewmembers returning on the Space Shuttle have an increased incidence of herniated nucleus pulposus after spaceflight. This increased risk is thought to be related to disc volume expansion due to unloading and prolonged exposure to microgravity. Although there is an increased risk of disc herniation in Space Shuttle astronauts, it is unknown if dynamic landing loads further contribute to the risk of herniation. To determine if dynamic loads increase the risk of incidence, data from crewmembers (excluding cosmonauts) returning on the Soyuz spacecraft will be compared to Space Shuttle astronauts. These data will be obtained from the Lifetime Surveillance of Astronaut Health (LSAH) Project at NASA. Severity and incidence after spaceflight will be mined from the data, and statistical analyses will be used to determine if Soyuz crewmembers have a higher incidence of disc herniation than Space Shuttle crewmembers. The results are expected to show no difference between Space Shuttle and Soyuz crewmembers, indicating that higher dynamic loads on landing and long-duration spaceflight do not significantly increase the risk of disc herniation. If no difference is shown between the two crewmember populations, then disc volume expansion due to microgravity does not significantly increase the risk of injury due to dynamic loads for deconditioned crewmembers. Any risk associated with deconditioning would be primarily due to bone structure changes and resulting bone strength changes. This study is an important first step in determining whether the spinal disc plays a role in injury due to dynamic loads

    How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    Get PDF
    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, postmortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multipurpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A twoparameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head xacceleration peak response correlated with the human response at 8 and 10G 100 ms but not 10G 70 ms. The phase lagged the human response. Head zacceleration was not correlated. Chest xacceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head xdisplacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder xdisplacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head xacceleration was not well correlated. Head and chest zacceleration was in phase but had a higher peak response. Chest zacceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder zdisplacement but the THOR was in phase and was comparable to the mean peak response. Head xand zdisplacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NAS

    Photoemission evidence for crossover from Peierls-like to Mott-like transition in highly strained VO2_2

    Full text link
    We present a spectroscopic study that reveals that the metal-insulator transition of strained VO2_2 thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical strain. Comparison with a moderately strained system, which does involve the lattice, demonstrates the crossover from Peierls- to Mott-like transitions

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1−x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x≈0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    BLENDING RAFFINATES FROM ZIRCONIUM AND ALUMINUM PROCESSES.

    Get PDF

    Suited and Unsuited Hybrid III Impact Testing and Finite Element Model Characterization

    Get PDF
    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley Dynamic Response Criteria and injury assessment reference values (IARV) extracted from anthropomorphic test devices (ATD). For the ATD IARVs, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Each of these ATDs is required to be fitted with an articulating pelvis (also known as the aerospace pelvis) and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. Sled testing of the Hybrid III 5th Percentile Female Anthropomorphic Test Device (ATD) was performed at Wright-Patterson Air Force Base (WAPFB). Two 5th Percentile ATDs were tested, the Air Force Research Lab (AFRL) and NASA owned Hybrid III ATDs with aerospace pelvises. Testing was also conducted with a NASA-owned 95th Percentile Male Hybrid III with aerospace pelvis at WPAFB. Testing was performed using an Orion seat prototype provided by Johnson Space Center (JSC). A 5-point harness comprised of 2 inch webbing was also provided by JSC. For suited runs, a small and extra-large Advanced Crew Escape System (ACES) suit and helmet were also provided by JSC. Impact vectors were combined frontal/spinal and rear/lateral. Some pure spinal and rear axis testing was also performed for model validation. Peak accelerations ranged between 15 and 20-g. This range was targeted because the ATD responses fell close to the IARV defined in the Human-Systems Integration Requirements (HSIR) document. Rise times varied between 70 and 110 ms to assess differences in ATD responses and model correlation for different impact energies. The purpose of the test series was to evaluate the Hybrid III ATD models in Orion-specific landing orientations both with and without a spacesuit. The results of these tests were used by the NASA Engineering and Safety Center (NESC) to validate the finite element model (FEM) of the Hybrid III 5th Percentile Female ATD. Physical test data was compared to analytical predictions from simulations, and modelling uncertainty factors have been determined for each injury metric. Additionally, the test data has been used to further improve the FEM, particularly in the areas of the ATD preload, harness, and suit and helmet effects

    Validation of the 5th and 95th Percentile Hybrid III Anthropomorphic Test Device Finite Element Model

    Get PDF
    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley criteria and injury metrics extracted from anthropomorphic test devices (ATD's). For the ATD injury metrics, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Furthermore, each of these ATD's is required to be fitted with an articulating pelvis and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. The requirements require that physical testing be performed with both ATD's to demonstrate compliance. Before compliance testing can be conducted, extensive modeling and simulation are required to determine appropriate test conditions, simulate conditions not feasible for testing, and assess design features to better ensure compliance testing is successful. While finite element (FE) models are currently available for many of the physical ATD's, currently there are no complete models for either the 5th percentile female or the 95th percentile male Hybrid III with a straight spine and articulating pelvis. The purpose of this work is to assess the accuracy of the existing Livermore Software Technology Corporation's FE models of the 5th and 95th percentile ATD's. To perform this assessment, a series of tests will be performed at Wright Patterson Air Force Research Lab using their horizontal impact accelerator sled test facility. The ATD's will be placed in the Orion seat with a modified-advanced-crew-escape-system (MACES) pressure suit and helmet, and driven with loadings similar to what is expected for the actual Orion vehicle during landing, launch abort, and chute deployment. Test data will be compared to analytical predictions and modelling uncertainty factors will be determined for each injury metric. Additionally, the test data will be used to further improve the FE model, particularly in the areas of the ATD neck components, harness, and suit and helmet effects

    Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2*

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function
    • …
    corecore