27 research outputs found

    A Comprehensive Updated Review of Pharmaceutical and Nonpharmaceutical Treatment for NAFLD

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with prevalence of 20–33%. NAFLD comprises a pathological spectrum. Nonalcoholic fatty liver (NAFL) is at one end and consists of simple hepatic steatosis. On the contrary, nonalcoholic steatohepatitis (NASH) consists of steatosis, inflammation, and ballooning degeneration and can progress to cirrhosis. Despite the rising incidence, definitive treatment for NAFLD, specifically NASH, has not yet been established. Lifestyle modification with dietary changes combined with regular aerobic exercise, along with multidisciplinary approach including cognitive behavior therapy, has been shown to be an effective therapeutic option, even without a significant weight loss. Pioglitazone and vitamin E have shown to be most effective in NASH patients. Surgery and weight loss medication are effective means of weight loss but can potentially worsen NASH related fibrosis. Other agents such as n-3 polyunsaturated fatty acids, probiotics, and pentoxifylline along with herbal agent such as milk thistle as well as daily intake of coffee have shown potential benefits, but further well organized studies are definitely warranted. This review focuses on the available evidence on pharmaceutical and nonpharmaceutical therapy in the treatment and the prevention of NAFLD, primarily NASH

    Photocatalytic decolorization of methyl orange dye using SnO2-TiO2 nanocomposite particles synthesised by Ultrasonic Assisted Co-Precipitation Method

    Get PDF
    The ultrasonic-aided co-precipitation method was used to create SnO2-TiO2 nanocomposite particles. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectroscopy were used to characterize the nanocomposite particles. XRD patterns revealed the crystalline structure of particles and the average particle size determined by Debye Scherrer’s equation was found to be 11.355, 4.9577, and 4.333 nm for TiO2 nanoparticles, SnO2 nanoparticles, and SnO2-TiO2 nanocomposites, respectively. The Ti, Sn, and O species were confirmed to exist by energy-dispersive X-ray spectroscopy (EDS). The UV absorption peaks at 288, 305, and 350 nm were attributed to SnO2, TiO2-SnO2, and TiO2 respectively. The photocatalytic aspect was investigated in a model organic contaminant (methyl orange). Data obtained by the above-mentioned characterization methods confirmed the superior photocatalytic activity of SnO2-TiO2 nanostructure than SnO2 or TiO2 alone

    Evaluation of heavy metal pollution risk associated with road sediment

    Get PDF
    A detailed investigation has been conducted to assess the heavy metal pollution risk associated with the road deposited sediment collected from the 32 major road sites in Chittagong city. The acid digestion of road sediments for metals extraction was carried out prior to determine total concentrations of Zn, Pb, Cr, Cu, Ni, Cd by using Polarized Zeeman Atomic Absorption Spectrophotometer (Z-2000) following standard analytical protocol. The contamination and pollution risk level were assessed using degree of contamination, potential ecological risk index and integrated pollution index. The study revealed that the mean heavy metal concentrations of Zn, Pb, Cr, Cu, Ni, Cd were found as 975, 84, 77, 74, 32, 1.6 mg/kg, respectively, across the road sites in Chittagong city. The mean concentrations are found 1.1 to 44 times higher in comparison to soil background, signifying relatively greater enrichment for Zn, Cd and Pb across the sites, suggesting vehicular emission on roads with site-specific characteristics. Based on pollution indices, Ruby Cement, City Gate and Enayeth Bazar road sites pose high risk, while eight other sites are found with moderate to considerable risk potential, and remaining 21 sites pose low to moderate risk potential

    Improvement of light intensity and efficiency of n-ZnO/NiO/p-GaN heterojunction-based white light emitting diodes using micro-/nanolens array

    Get PDF
    Our study proposes a technique to enhance light extraction efficiency of light emitting diodes (LEDs) by incorporating various micro-/nanolens arrays (MNLAs) on the substrate layer, which in turn increases the external quantum efficiency (EQE) of the LEDs. To simulate the LEDs, we utilized the finite difference time domain method. To achieve a white LED, we inserted a thin layer of NiO at the interface between the n-type ZnO and the p-type GaN. The basic n-ZnO/NiO/p-GaN heterojunction-based LED exhibited an EQE of 10.99% where the effective refractive index of the LED structure was 1.48. The EQE was further increased by engraving various planoconvex or planoconcave MNLA on the top surface of the substrate layer. A maximum EQE of 12.4% was achieved for convex-1 type (lens height of 0.5  μm and radius of 0.4  μm) elliptical lens engraved LED where the effective refractive index was 1.4. In addition, the peak electroluminescence (EL) light intensity of convex-1 lens-based LED was twice than the light intensity observed in basic LED. Because of excellent EL spectrum and significant amount of light throughout the visible spectrum, the proposed convex-1 structure-based LED can be considered as a prospective candidate for white LED

    A 30-day follow-up study on the prevalence of SARS-COV-2 genetic markers in wastewater from the residence of COVID-19 patient and comparison with clinical positivity

    Get PDF
    Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewa-ter samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target non-structural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship be-tween COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.Peer reviewe

    Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities

    Get PDF
    Wastewater-based epidemiology (WBE) has emerged as a valuable approach for forecasting disease outbreaks in developed countries with a centralized sewage infrastructure. On the other hand, due to the absence of well-defined and systematic sewage networks, WBE is challenging to implement in developing countries like Bangladesh where most people live in rural areas. Identification of appropriate locations for rural Hotspot Based Sampling (HBS) and urban Drain Based Sampling (DBS) are critical to enable WBE based monitoring system. We investigated the best sampling locations from both urban and rural areas in Bangladesh after evaluating the sanitation infrastructure for forecasting COVID-19 prevalence. A total of 168 wastewater samples were collected from 14 districts of Bangladesh during each of the two peak pandemic seasons. RT-qPCR commercial kits were used to target ORF1ab and N genes. The presence of SARS-CoV-2 genetic materials was found in 98% (165/168) and 95% (160/168) wastewater samples in the first and second round sampling, respectively. Although wastewater effluents from both the marketplace and isolation center drains were found with the highest amount of genetic materials according to the mixed model, quantifiable SARS-CoV-2 RNAs were also identified in the other four sampling sites. Hence, wastewater samples of the marketplace in rural areas and isolation centers in urban areas can be considered the appropriate sampling sites to detect contagion hotspots. This is the first complete study to detect SARS-CoV-2 genetic components in wastewater samples collected from rural and urban areas for monitoring the COVID-19 pandemic. The results based on the study revealed a correlation between viral copy numbers in wastewater samples and SARS-CoV-2 positive cases reported by the Directorate General of Health Services (DGHS) as part of the national surveillance program for COVID-19 prevention. The findings of this study will help in setting strategies and guidelines for the selection of appropriate sampling sites, which will facilitate in development of comprehensive wastewater-based epidemiological systems for surveillance of rural and urban areas of low-income countries with inadequate sewage infrastructure.This research was supported by Water Aid Bangladesh, North South University, Dhaka, COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University (NSTU), Noakhali, Bangladesh, the International Training Network of Bangladesh University of Engineering and Technology (ITN-BUET) - Centre for Water Supply and Waste Management, and KTH Royal Institute of Technology, Sweden. We acknowledge the sincere help and support of the staff and volunteers of NSTU-COVID-19 Diagnostic Lab, Noakhali Science and Technology University, Bangladesh during the different phases of the study. PB and MTI acknowledge the Life Science Technology Platform, Science for Life Laboratory for the seed funding to initiate the wastewater-based epidemiological studies for SARS-CoV-2 in Bangladesh. We would also like to acknowledge the two anonymous reviewers for their critical comments as well as their thoughtful insights, which has significantly improved the manuscript.Peer reviewe

    A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis

    No full text
    Quantum dot-cellular automata (QCA) are one of novel emerging nanotechnology, which seem to be excellent alternatives to the conventional complementary metal-oxide semiconductor (CMOS) technology. QCA technology has a wide range of optimize facet such as ultra-low power consumption, faster switching speed and extremely density structure. In this paper, a novel exclusive-OR (XOR) gate is presented. This proposed XOR gate requires only 12 cells and dissipates 12.11 meV energies at 1.0Ek tunneling energy level. To inspect the efficacy of proposed XOR gate, new QCA design of half and full subtractor is introduced here. In comparison with previous QCA designs, the proposed layouts are implemented with the minimum area, minimum number of cells and delay without any wire-crossing techniques. The proposed, half and full subtractors require 19 and 32 cells and occupy 0.0186 μm2 and 0.0287 μm2 area respectively. To validate the accuracy of the proposed design, QCADesigner, a familiar QCA simulation tool is employed. Keywords: Quantum-dot cellular automata, QCA exclusive-OR, Half and full subtractor, QCADesigner, QCAPr

    The Power of Social Media Analytics: Text Analytics Based on Sentiment Analysis and Word Clouds on R

    No full text
    Apparently, word clouds have grown as a clear and appealing illustration or visualization strategy in terms of text. Word clouds are used as a part of various settings as a way to give a diagram by cleansing text throughout those words that come up with most frequently. Generally, this is performed constantly as an unadulterated text outline. In any case, that there is a bigger capability to this basic yet intense visualization worldview in text analytics. In this work, we investigate the adequacy of word clouds for general text analysis errands and also analyze the tweets to find out the sentiment and also discuss the legal aspects of text mining. We used R software to pull twitter data which depends altogether on word cloud as a visualization technique and also with the help of positive and negative words to determine the user sentiment. We indicate how this approach can be viably used to explain text analysis tasks and assess it in a qualitative user research

    Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model

    No full text
    Hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] is remarkably similar to the hard tissue of the human body and the uses of this material in various fields in addition to the medical sector are increasing day by day. In this research, mustered oil, soybean oil, as well as coconut oil were employed as liquid media for synthesizing nanocrystalline HAp using a wet chemical precipitation approach. The X-ray diffraction (XRD) study verified the crystalline phase of the HAp in all the indicated media and discovered similarities with the standard database. Several prominent models such as the Scherrer's Method (SM), Halder-Wagner Method (HWM), linear straight-line method (LSLM), Williamson-Hall Method (W-M), Monshi Scherrer Method (MSM), Size-Strain Plot Method (SSPM), Sahadat-Scherrer Method (S–S) were applied for the determination of crystallite size. The stress, strain, and energy density were also computed from the above models. All the models, without the Linear straight-line technique of Scherrer's equation, resulted in an appropriate value of crystallite size for synthesized products. The calculated crystallite sizes were 6.5 nm for HAp in master oil using Halder-Wagner Method, and 143 nm for HAp in coconut oil using the Scherrer equation which were the lowest and the largest, respectively
    corecore