4,952 research outputs found
New microelectronic power amplifier
Integrated push-pull power amplifier fabricated on a chip of silicon has interdigitated power transistors and is hermetically encapsulated in a beryllia flat package. It provides current output greater than the nominal 10 amperes from an input current drive of 1 ampere
Numerical Investigation on Flow Separation Control of Low Reynolds Number Sinusoidal Aerofoils
The paper presents a computational analysis of the characteristics of a NACA 634-
021 aerofoil incorporated with sinusoidal leading-edge protuberances at Re = 14,000.
The protuberances are characterized by an amplitude and wavelength of 12% and 50%
of the aerofoil chord length respectively. An unsteady Reynolds Average Navier Stokes
(RANS) analysis of the full-span aerofoils was carried out using Transition SST (Shear
Stress Transport) turbulence model across five different angles-of-attack (AOA).
Comparisons with previous experimental results reported good qualitative agreements
in terms of flow separation when the aerofoils are pitched at higher AOAs. Results
presented here comprised of near-wall flow visualizations of the flow separation bubble
at the peaks and troughs of the protuberances. Additionally, results indicate that the
aerofoil with leading-edge protuberances displayed distinctive wall shear streamline and
iso-contour characteristics at different span-wise positions. This implies that even at a
low Reynolds number, implementations of these leading-edge protuberances could have
positive or adverse effects on flow separation
Integrated power amplifier Final report, Mar. 1964 - Sep. 1965
Integrated power amplifier desig
Development and fabrication of a high power silicon switching transistor Final report, Aug. 1965 - Apr. 1966
High-current, low-voltage silicon switching transistor redesigned for obtaining lowest possible saturation dro
On Approximating the Number of -cliques in Sublinear Time
We study the problem of approximating the number of -cliques in a graph
when given query access to the graph.
We consider the standard query model for general graphs via (1) degree
queries, (2) neighbor queries and (3) pair queries. Let denote the number
of vertices in the graph, the number of edges, and the number of
-cliques. We design an algorithm that outputs a
-approximation (with high probability) for , whose
expected query complexity and running time are
O\left(\frac{n}{C_k^{1/k}}+\frac{m^{k/2}}{C_k}\right)\poly(\log
n,1/\varepsilon,k).
Hence, the complexity of the algorithm is sublinear in the size of the graph
for . Furthermore, we prove a lower bound showing that
the query complexity of our algorithm is essentially optimal (up to the
dependence on , and ).
The previous results in this vein are by Feige (SICOMP 06) and by Goldreich
and Ron (RSA 08) for edge counting () and by Eden et al. (FOCS 2015) for
triangle counting (). Our result matches the complexities of these
results.
The previous result by Eden et al. hinges on a certain amortization technique
that works only for triangle counting, and does not generalize for larger
cliques. We obtain a general algorithm that works for any by
designing a procedure that samples each -clique incident to a given set
of vertices with approximately equal probability. The primary difficulty is in
finding cliques incident to purely high-degree vertices, since random sampling
within neighbors has a low success probability. This is achieved by an
algorithm that samples uniform random high degree vertices and a careful
tradeoff between estimating cliques incident purely to high-degree vertices and
those that include a low-degree vertex
Few cycle pulse propagation
We present a comprehensive framework for treating the nonlinear interaction
of few-cycle pulses using an envelope description that goes beyond the
traditional SVEA method. This is applied to a range of simulations that
demonstrate how the effect of a nonlinearity differs between the
many-cycle and few-cycle cases. Our approach, which includes diffraction,
dispersion, multiple fields, and a wide range of nonlinearities, builds upon
the work of Brabec and Krausz[1] and Porras[2]. No approximations are made
until the final stage when a particular problem is considered.
The original version (v1) of this arXiv paper is close to the published
Phys.Rev.A. version, and much smaller in size.Comment: 9 pages, 14 figure
Perturbative QCD effects and the search for a H->WW->l nu l nu signal at the Tevatron
The Tevatron experiments have recently excluded a Standard Model Higgs boson
in the mass range 160 - 170 GeV at the 95% confidence level. This result is
based on sophisticated analyses designed to maximize the ratio of signal and
background cross-sections. In this paper we study the production of a Higgs
boson of mass 160 GeV in the gg -> H -> WW -> l nu l nu channel. We choose a
set of cuts like those adopted in the experimental analysis and compare
kinematical distributions of the final state leptons computed in NNLO QCD to
lower-order calculations and to those obtained with the event generators
PYTHIA, HERWIG and MC@NLO. We also show that the distribution of the output
from an Artificial Neural Network obtained with the different tools does not
show significant differences. However, the final acceptance computed with
PYTHIA is smaller than those obtained at NNLO and with HERWIG and MC@NLO. We
also investigate the impact of the underlying event and hadronization on our
results.Comment: Extra discussion and references adde
Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators
Correlation functions in ohmically damped
systems such as coupled harmonic oscillators or optical resonators can be
expressed as a single sum over modes (which are not power-orthogonal), with
each term multiplied by the Petermann factor (PF) , leading to "excess
noise" when . It is shown that is common rather than
exceptional, that can be large even for weak damping, and that the PF
appears in other processes as well: for example, a time-independent
perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The
coalescence of () eigenvectors gives rise to a critical point, which
exhibits "giant excess noise" (). At critical points, the
divergent parts of contributions to cancel, while time-independent
perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2
figures. Streamlined with emphasis on physics over formalism; rewrote Section
V E so that it refers to time-dependent (instead of non-equilibrium) effect
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse
We have carried out an extensive set of two-dimensional, axisymmetric,
purely-hydrodynamic calculations of rotational stellar core collapse with a
realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different
simulations we performed, the gravitational wave signature was extracted via
the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational
kinetic energy to gravitational potential energy and in the initial degree of
differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of
rotation and magnetic torques. For each model, we calculate gravitational
radiation wave forms, characteristic wave strain spectra, energy spectra, final
rotational profiles, and total radiated energy. In addition, we compare our
model signals with the anticipated sensitivities of the 1st- and 2nd-generation
LIGO detectors coming on line. We find that most of our models are detectable
by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan.
2004). Revised version: Corrected typos and minor mistakes in text and
references. Minor additions to the text according to the referee's
suggestions, conclusions unchange
- …