164 research outputs found

    Interpolation by Linear Functions on an nn-Dimensional Ball

    Full text link
    By B=B(x(0);R)B=B(x^{(0)};R) we denote the Euclidean ball in Rn{\mathbb R}^n given by the inequality xx(0)R\|x-x^{(0)}\|\leq R. Here x(0)Rn,R>0x^{(0)}\in{\mathbb R}^n, R>0, x:=(i=1nxi2)1/2\|x\|:=\left(\sum_{i=1}^n x_i^2\right)^{1/2}. We mean by C(B)C(B) the space of continuous functions f:BRf:B\to{\mathbb R} with the norm fC(B):=maxxBf(x)\|f\|_{C(B)}:=\max_{x\in B}|f(x)| and by Π1(Rn)\Pi_1\left({\mathbb R}^n\right) the set of polynomials in nn variables of degree 1\leq 1, i.e., linear functions on Rn{\mathbb R}^n. Let x(1),,x(n+1)x^{(1)}, \ldots, x^{(n+1)} be the vertices of nn-dimensional nondegenerate simplex SBS\subset B. The interpolation projector P:C(B)Π1(Rn)P:C(B)\to \Pi_1({\mathbb R}^n) corresponding to SS is defined by the equalities Pf(x(j))=f(x(j)).Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right). We obtain the formula to compute the norm of PP as an operator from C(B)C(B) into C(B)C(B) via x(0)x^{(0)}, RR and coefficients of basic Lagrange polynomials of SS. In more details we study the case when SS is a regular simplex inscribed into Bn=B(0,1)B_n=B(0,1).Comment: 17 pages, 6 figures, 1 tabl

    Geometric Estimates in Interpolation by Linear Functions on a Euclidean Ball

    Full text link
    Let BnB_n be the Euclidean unit ball in Rn{\mathbb R}^n given by the inequality x1\|x\|\leq 1, x:=(i=1nxi2)12\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}. By C(Bn)C(B_n) we mean the space of continuous functions f:BnRf:B_n\to{\mathbb R} with the norm fC(Bn):=maxxBnf(x)\|f\|_{C(B_n)} := \max\limits_{x\in B_n}|f(x)|. The symbol Π1(Rn)\Pi_1\left({\mathbb R}^n\right) denotes the set of polynomials in nn variables of degree 1\leq 1, i.e., the set of linear functions upon Rn{\mathbb R}^n. Assume x(1),,x(n+1)x^{(1)}, \ldots, x^{(n+1)} are the vertices of an nn-dimensional nondegenerate simplex SBnS\subset B_n. The interpolation projector P:C(Bn)Π1(Rn)P:C(B_n)\to \Pi_1({\mathbb R}^n) corresponding to SS is defined by the equalities Pf(x(j))=f(x(j)).Pf\left(x^{(j)}\right) = f\left(x^{(j)}\right). Denote by PBn\|P\|_{B_n} the norm of PP as an operator from C(Bn)C(B_n) onto C(Bn)C(B_n). We describe the approach in which PBn\|P\|_{B_n} can be estimated from below via the volume of SS.Comment: 10 page

    On Properties of a Regular Simplex Inscribed into a Ball

    Full text link
    Let BB be a Euclidean ball in Rn{\mathbb R}^n and let C(B)C(B) be a space of~continuous functions f:BRf:B\to{\mathbb R} with the uniform norm fC(B):=maxxBf(x).\|f\|_{C(B)}:=\max_{x\in B}|f(x)|. By Π1(Rn)\Pi_1\left({\mathbb R}^n\right) we mean a set of polynomials of degree 1\leq 1, i.e., a set of linear functions upon Rn{\mathbb R}^n. The interpolation projector P:C(B)Π1(Rn)P:C(B)\to \Pi_1({\mathbb R}^n) with the nodes x(j)Bx^{(j)}\in B is defined by the equalities Pf(x(j))=f(x(j))Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right), j=1,j=1, ,\ldots, n+1 n+1. The norm of PP as an operator from C(B)C(B) to C(B)C(B) can be calculated by the formula PB=maxxBλj(x).\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|. Here λj\lambda_j are the basic Lagrange polynomials corresponding to the nn-dimensional nondegenerate simplex SS with the vertices x(j)x^{(j)}. Let PP^\prime be a projector having the nodes in the vertices \linebreak of a regular simplex inscribed into the ball. We describe the points yBy\in B with the property PB=λj(y)\|P^\prime\|_B=\sum |\lambda_j(y)|. Also we formulate a geometric conjecture which implies that PB\|P^\prime\|_B is equal to the minimal norm of an interpolation projector with nodes in BB. We prove that this conjecture holds true at least for n=1,2,3,4n=1,2,3,4. Keywords: regular simplex, ball, linear interpolation, projector, normComment: 13 page

    The Minimum Norm of a Projector under Linear Interpolation on a Euclidean Ball

    Full text link
    We prove the following proposition. Under linear interpolation on a Euclidean nn-dimensional ball BB, an interpolation projector whose nodes coincide with the vertices of a regular simplex inscribed into the boundary sphere has the minimum CC-norm. This minimum norm θn(B)\theta_n(B) is equal to max{ψ(an),ψ(an+ 1)}\max\{\psi(a_n),\psi(a_n+~1)\}, where ψ(t)=2nn+1(t(n+1t))1/2+12tn+1\psi(t)=\dfrac{2\sqrt{n}}{n+1}\Bigl(t(n+1-t)\Bigr)^{1/2}+ \left|1-\dfrac{2t}{n+1}\right|, 0tn+10\leq t\leq n+1, and an=n+12n+12a_n=\left\lfloor\dfrac{n+1}{2}-\dfrac{\sqrt{n+1}}{2}\right\rfloor. For any nn, nθn(B)n+1.\sqrt{n}\leq \theta_n(B)\leq \sqrt{n+1}. Moreover, θn(B)\theta_n(B) == n\sqrt{n} only for n=1n=1 and θn(B)=n+1\theta_n(B)=\sqrt{n+1} if and only if n+1\sqrt{n+1} is an integer.Comment: 7 page

    On a Geometric Approach to the Estimation of Interpolation Projectors

    Full text link
    Suppose Ω\Omega is a closed bounded subset of Rn,{\mathbb R}^n, SS is an nn-dimensional non-degenerate simplex, ξ(Ω;S):=min{σ1:ΩσS}\xi(\Omega;S):=\min \left\{\sigma\geq 1: \, \Omega\subset \sigma S\right\}. Here σS\sigma S is the result of homothety of SS with respect to the center of gravity with coefficient σ\sigma. Let dn+1,d\geq n+1, φ1(x),,φd(x)\varphi_1(x),\ldots,\varphi_d(x) be linearly independent monomials in nn variables, φ1(x)1,\varphi_1(x)\equiv 1, φ2(x)=x1, , φn+1(x)=xn.\varphi_2(x)=x_1,\ \ldots, \ \varphi_{n+1}(x)=x_n. Put Π:=lin(φ1,,φd).\Pi:={\rm lin}(\varphi_1,\ldots,\varphi_d). The interpolation projector P:C(Ω)ΠP: C(\Omega)\to \Pi with a set of nodes x(1),,x(d)x^{(1)},\ldots, x^{(d)} Ω \in \Omega is defined by equalities Pf(x(j))=f(x(j)).Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right). Denote by PΩ\|P\|_{\Omega} the norm of PP as an operator from C(Ω)C(\Omega) to C(Ω)C(\Omega). Consider the mapping T:RnRd1T:{\mathbb R}^n\to {\mathbb R}^{d-1} of the form T(x):=(φ2(x),,φd(x)).T(x):=(\varphi_2(x),\ldots,\varphi_d(x)). We have the following inequalities: 12(1+1d1)(PΩ1)+1 \frac{1}{2}\left(1+\frac{1}{d-1}\right)\left(\|P\|_{\Omega}-1\right)+1 ξ(T(Ω);S)d2(PΩ1)+1. \leq \xi(T(\Omega);S)\leq \frac{d}{2}\left(\|P\|_{\Omega}-1\right)+1. Here SS is the (d1)(d-1)-dimensional simplex with vertices T(x(j)).T\left(x^{(j)}\right). We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.Comment: 13 pages, 2 figure

    On Some Estimate for the Norm of an Interpolation Projector

    Get PDF
    Let Qn=[0,1]nQ_n=[0,1]^n be the unit cube in Rn{\mathbb R}^n and let C(Qn)C(Q_n) be a space of continuous functions f:QnRf:Q_n\to{\mathbb R} with the norm fC(Qn):=maxxQnf(x).\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|. By Π1(Rn)\Pi_1\left({\mathbb R}^n\right) denote a set of polynomials in nn variables of degree 1\leq 1, i. e., a set of linear functions on Rn{\mathbb R}^n. The interpolation projector P:C(Qn)Π1(Rn)P:C(Q_n)\to \Pi_1({\mathbb R}^n) with the nodes x(j)Qnx^{(j)}\in Q_n is defined by the equalities Pf(x(j))=f(x(j))Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right), j=1,j=1, ,\ldots, n+1 n+1. Let PQn\|P\|_{Q_n} be the norm of PP as an operator from C(Qn)C(Q_n) to C(Qn)C(Q_n). If n+1n+1 is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of QnQ_n. We discuss some approaches to get inequalities of the form PQncn||P||_{Q_n}\leq c\sqrt{n} for the norm of the corresponding projector PP

    Microstructure and properties of hypoeutectic silumin treated by high-current pulsed electron beams

    No full text
    The structural-phase states, microhardness, and tribological properties of hypoeutectic silumin after electron-beam treatment are studied by the methods of contemporary physical materials science. The object of the study is hypoeutectic АК10М2Н-type silumin containing 87.88 wt.% of Al and 11.1 wt.% of Si as the base components.Методами сучасного фізичного матеріалознавства досліджено структурно-фазові стани, мікротвердість і трибологічні властивості доевтектичного силуміну після електронно-пучкового оброблення. Об єктом дослідження був доевтектичний силумін марки АК10М2Н із вмістом 87,88 ваг.% Al й 11,1 ваг.% Si як головних компонентів.Методами современного физического материаловедения исследованы структурнофазовые состояния, микротв рдость и трибологические свойства доэвтектического силумина после электронно-пучковой обработки. Объектом исследования являлся доэвтектический силумин марки АК10М2Н с содержанием 87,88 вес.% Al и 11,1 вес.% Si как главных компонентов

    О гипотезе Лассака для выпуклого тела

    Get PDF
    In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube [0,1]n[0,1]^n into a convex body CRnC \subset R^n, then i=1n1ωi1\sum_{i=1}^n \frac{1}{\omega_i} \geq 1. Here ωi\omega_i denotes the width of CC in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of [0,1]n[0,1]^n can be inscribed into the n-dimensional simplex, then for this simplex holds i=1n1ωi=1\sum_{i=1}^n \frac{1}{\omega_i} = 1.В 1993 г. М. Лассак сформулировал (в эквивалентном виде) следующую гипотезу. Если в выпуклое тело CRnC \subset R^n можно вписать транслят куба [0,1]n[0,1]^n, то i=1n1ωi1\sum_{i=1}^n \frac{1}{\omega_i} \geq 1. Здесь ωi\omega_i - ширина CC в направлении i-й координатной оси. В статье даётся новое доказательство этого утверждения для n = 2. Также мы показываем, что для n-мерного симплекса, в который можно вписать транслят [0,1]n[0,1]^n, справедливо i=1n1ωi=1\sum_{i=1}^n \frac{1}{\omega_i} = 1
    corecore