1,411 research outputs found

    Testing an ecophysiological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish

    Get PDF
    Imperiled species that have been translocated or established in captivity can show rapid alterations in morphology and behavior, but the proximate mechanisms of such phenotypic changes are rarely known. Devils Hole pupfish (Cyprinodon diabolis) are endemic to a single desert pool and are characterized by a small body, large head and eyes, and lack of pelvic fins. To lessen the risk of extinction, additional populations of C. diabolis were established in artificial refuges. Yet, pupfish in these refuges rapidly shifted to a larger body, smaller head and eyes, and greater body depth. Here we examined how food availability and temperature, which differ between these habitats, influence morphological development in closely related Amargosa River pupfish (Cyprinodon nevadensis amargosae). We were interested in knowing whether these environmental factors could developmentally shift Amargosa River pupfish toward the morphology typical of pupfish in Devil\u27s Hole. By regulating food ration, we created groups of pupfish with low, medium and high growth rates. Pupfish with low growth showed proportionally larger head and eyes, smaller body depth, and reduction in pelvic fin development. Elevated temperature further inhibited pelvic fin development in all treatments. Pupfish in the low growth group also showed reduced levels of thyroid hormone, suggesting a possible physiological mechanism underlying these morphological changes. To test this mechanism further, pupfish were reared with goitrogens to pharmacologically inhibit endogenous thyroid hormone production. Pupfish given goitrogens developed larger heads and eyes, shallower bodies, and reduced pelvic fins. Taken together, our results suggest that changes in environmental factors affecting the growth and thyroid hormone status of juvenile pupfish may play a developmental role in generating the morphological differences between C. diabolis in Devil\u27s Hole and the refuges. These findings illustrate the need to incorporate a mechanistic understanding of phenotypic plasticity into conservation strategies to preserve imperiled fishes

    Evidence for olfactory learning in procellariiform seabird chicks

    Get PDF
    Burrow nesting procellariiform seabirds use olfactory cues for both foraging and nest recognition. As chicks, burrow nesters develop in the dark, but are exposed to both prey-related and individual-specific scents through contact with their parents. This exposure suggests that chicks may have the opportunity to learn odors while still in the nest. In this study, we examined whether exposure to odorants during development might influence olfactory search behavior expressed later in life. To test this idea, we exposed eggs of thin-billed prions Pachyptila belcheri to a rosy-scented novel odor (phenyl ethyl alcohol, PEA) or a control (water) just before hatching; chicks were then tested with these odors in a simple wind tunnel. Prior to fledgling, subjects who had received pre-exposure to PEA displayed head sweeps nearly twice as frequently as control birds did when presented with PEA. This study demonstrates that under natural rearing conditions, procellariiforms learn odor characteristics of their rearing environment in the nest

    Doping driven magnetic instabilities and quantum criticality of NbFe2_{2}

    Full text link
    Using density functional theory we investigate the evolution of the magnetic ground state of NbFe2_{2} due to doping by Nb-excess and Fe-excess. We find that non-rigid-band effects, due to the contribution of Fe-\textit{d} states to the density of states at the Fermi level are crucial to the evolution of the magnetic phase diagram. Furthermore, the influence of disorder is important to the development of ferromagnetism upon Nb doping. These findings give a framework in which to understand the evolution of the magnetic ground state in the temperature-doping phase diagram. We investigate the magnetic instabilities in NbFe2_{2}. We find that explicit calculation of the Lindhard function, χ0(q)\chi_{0}(\mathbf{q}), indicates that the primary instability is to finite q\mathbf{q} antiferromagnetism driven by Fermi surface nesting. Total energy calculations indicate that q=0\mathbf{q}=0 antiferromagnetism is the ground state. We discuss the influence of competing q=0\mathbf{q}=0 and finite q\mathbf{q} instabilities on the presence of the non-Fermi liquid behavior in this material.Comment: 8 pages, 7 figure

    Phenotype management: a new approach to habitat restoration

    Get PDF
    The goal of habitat restoration is to provide environmental conditions that promote the maintenance and growth of target populations. But rarely is it considered how the allocation of resources influences the diversity of phenotypes in these populations. Here we present a framework for considering how habitat restoration can shape the development and expression of phenotypes. We call this approach phenotype management as it entails restoring the resources in a habitat to manage phenotypic diversity. Phenotype management is achieved by manipulating the spatial and temporal distribution of resources to alter the degree of competition among individuals. Differences in competition, in turn, lead to changes in phenotypic and life history expression that affect population parameters including demography and effective population size (Ne). To illustrate how phenotype management can be applied, we explore how resource distributions shape variation in phenotypes in two imperiled fishes, Pacific salmon and desert pupfish. In both examples, modulating male reproductive phenotypes changes the allocation of reproductive success among population members to subsequently affect Ne. These examples further demonstrate that whether to increase or decrease phenotypic diversity depends on the primary conservation pressures faced by the species

    Influences of state anxiety on gaze behavior and stepping accuracy in older adults during adaptive locomotion

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © The Authors 2011.OBJECTIVES: Older adults deemed to be at a high risk of falling transfer their gaze from a stepping target earlier than their low-risk counterparts. The extent of premature gaze transfer increases with task complexity and is associated with a decline in stepping accuracy. This study tests the hypothesis that increased anxiety about upcoming obstacles is associated with (a) premature transfers of gaze toward obstacles (i.e., looking away from a target box prior to completing the step on it in order to fixate future constraints in the walkway) and (b) reduced stepping accuracy on the target in older adults. METHODS: High-risk (9) and low-risk (8) older adult participants walked a 10-m pathway containing a stepping target area followed by various arrangements of obstacles, which varied with each trial. Anxiety, eye movements, and movement kinematics were measured. RESULTS: Progressively increasing task complexity resulted in associated statistically significant increases in measures of anxiety, extent of early gaze transfer, and stepping inaccuracies in the high-risk group. DISCUSSION: These results provide evidence that increased anxiety about environmental hazards is related to suboptimal visual sampling behavior which, in turn, negatively influences stepping performance, potentially contributing to increased falls risk in older adults.Biotechnology and Biological Sciences Research Counci

    Tuning a nose to forage: Evidence for olfactory learning in a procellariiform seabird chicks

    Get PDF
    Burrow nesting procellariiform seabirds use olfactory cues for both foraging and nest recognition. As chicks, burrow nesters develop in the dark, but are exposed to both prey-related and individual-specific scents through contact with their parents. This exposure suggests that chicks may have the opportunity to learn odours while still in the nest. In this study, we examined whether exposure to odourants during development might influence olfactory search behaviour expressed later in life. To test this idea, we exposed eggs of thin-billed prions Pachyptila belcheri to a rosy-scented novel odour (phenyl ethyl alcohol, PEA) or a control (water) just before hatching; chicks were then tested with these odours in a simple wind tunnel. Prior to fledging, subjects who had received pre-exposure to PEA displayed head sweeps nearly twice as frequently as control birds did when presented with PEA. This study demonstrates that under natural rearing conditions, procellariiforms learn odour characteristics of their rearing environment in the nest

    Responses of common diving petrel chicks (Pelecanoides urinatrix) to burrow and colony specific odours in a simple wind tunnel

    Get PDF
    Researchers have previously assumed that common diving petrels (Pelecanoides urinatrix) have a limited sense of smell since they have relatively small olfactory bulbs. A recent study, however, showed that adult diving petrels prefer the scent of their own burrow compared to burrows of other diving petrels, implying that personal scents contribute to the burrow’s odour signature. Because diving petrels appear to be adapted to use olfaction in social contexts, they could be a useful model for investigating how chemically mediated social recognition develops in birds. A first step is to determine whether diving petrel chicks can detect familiar and unfamiliar odours. We compared behavioural responses of chicks to three natural stimuli in a wind tunnel: soil collected from their burrow or colony, and a blank control. During portions of the experiment, chicks turned the least and walked the shortest distances in response to odours from the nest, which is consistent with their sedentary behaviour within the burrow. By contrast, behaviours linked to olfactory search increased when chicks were exposed to blank controls. These results suggest that common diving petrel chicks can detect natural olfactory stimuli before fledging, and lay the foundation for future studies on the role of olfaction in social contexts for this species
    • …
    corecore