11 research outputs found

    Safety and Efficacy of Stereotactic Body Radiotherapy for Stage I Non-Small-Cell Lung Cancer in Routine Clinical Practice: A Patterns-of-Care and Outcome Analysis

    Get PDF
    Introduction:To evaluate safety and efficacy of stereotactic body radiotherapy (SBRT) for stage I non–small-cell lung cancer (NSCLC) in a patterns-of-care and patterns-of-outcome analysis.Methods:The working group “Extracranial Stereotactic Radiotherapy” of the German Society for Radiation Oncology performed a retrospective multicenter analysis of practice and outcome after SBRT for stage I NSCLC. Sixteen German and Austrian centers with experience in pulmonary SBRT were asked to participate.Results:Data of 582 patients treated at 13 institutions between 1998 and 2011 were collected; all institutions, except one, were academic hospitals. A time trend to more advanced radiotherapy technologies and escalated irradiation doses was observed, but patient characteristics (age, performance status, pulmonary function) remained stable over time. Interinstitutional variability was substantial in all treatment characteristics but not in patient characteristics. After an average follow-up of 21 months, 3-year freedom from local progression (FFLP) and overall survival (OS) were 79.6% and 47.1%, respectively. The biological effective dose was the most significant factor influencing FFLP and OS: after more than 106 Gy biological effective dose as planning target volume encompassing dose (N = 164), 3-year FFLP and OS were 92.5% and 62.2%, respectively. No evidence of a learning curve or improvement of results with larger SBRT experience and implementation of new radiotherapy technologies was observed.Conclusion:SBRT for stage I NSCLC was safe and effective in this multi-institutional, academic environment, despite considerable interinstitutional variability and time trends in SBRT practice. Radiotherapy dose was identified as a major treatment factor influencing local tumor control and OS

    Support Vector Machine-Based Prediction of Local Tumor Control After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    No full text
    BACKGROUND: Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. METHODS AND MATERIALS: We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performance by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. RESULTS: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED(ISO)) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED(ISO) and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED(ISO), age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. CONCLUSIONS: These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning

    Correlating Dose Variables with Local Tumor Control in Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer: A Modeling Study on 1500 Individual Treatments

    No full text
    Background: Large variation regarding prescription and dose inhomogeneity exists in stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer. The aim of this modeling study was to identify which dose metric correlates best with local tumor control probability to make recommendations regarding SBRT prescription. Methods and materials: We combined 2 retrospective databases of patients with non-small cell lung cancer, yielding 1500 SBRT treatments for analysis. Three dose parameters were converted to biologically effective doses (BEDs): (1) the (near-minimum) dose prescribed to the planning target volume (PTV) periphery (yielding BEDmin); (2) the (near-maximum) dose absorbed by 1% of the PTV (yielding BEDmax); and (3) the average between near-minimum and near-maximum doses (yielding BEDave). These BED parameters were then correlated to the risk of local recurrence through Cox regression. Furthermore, BED-based prediction of local recurrence was attempted by logistic regression and fast and frugal trees. Models were compared using the Akaike information criterion. Results: There were 1500 treatments in 1434 patients; 117 tumors recurred locally. Actuarial local control rates at 12 and 36 months were 96.8% (95% confidence interval, 95.8%-97.8%) and 89.0% (87.0%-91.1%), respectively. In univariable Cox regression, BEDave was the best predictor of risk of local recurrence, and a model based on BEDmin had substantially less evidential support. In univariable logistic regression, the model based on BEDave also performed best. Multivariable classification using fast and frugal trees revealed BEDmax to be the most important predictor, followed by BEDave. Conclusions: BEDave was generally better correlated with tumor control probability than either BEDmax or BEDmin. Because the average between near-minimum and near-maximum doses was highly correlated to the mean gross tumor volume dose, the latter may be used as a prescription target. More emphasis could be placed on achieving sufficiently high mean doses within the gross tumor volume rather than the PTV covering dose, a concept needing further validation

    Bayesian cure rate modeling of local tumor control: evaluation in stereotactic body radiation therapy for pulmonary metastases

    Full text link
    PURPOSE: Most radiobiological models for prediction of tumor control probability (TCP) do not account for the fact that many events could remain unobserved because of censoring. We therefore evaluated a set of TCP models that take into account this censoring. METHODS AND MATERIALS: We applied 2 fundamental Bayesian cure rate models to a sample of 770 pulmonary metastasis treated with stereotactic body radiation therapy at German, Austrian, and Swiss institutions: (1) the model developed by Chen, Ibrahim and Sinha (the CIS99 model); and (2) a mixture model similar to the classic model of Berkson and Gage (the BG model). In the CIS99 model the number of clonogens surviving the radiation treatment follows a Poisson distribution, whereas in the BG model only 1 dominant recurrence-competent tissue mass may remain. The dose delivered to the isocenter, tumor size and location, sex, age, and pretreatment chemotherapy were used as covariates for regression. RESULTS: Mean follow-up time was 15.5 months (range: 0.1-125). Tumor recurrence occurred in 11.6% of the metastases. Delivered dose, female sex, peripheral tumor location and having received no chemotherapy before RT were associated with higher TCP in all models. Parameter estimates of the CIS99 were consistent with the classical Cox proportional hazards model. The dose required to achieve 90% tumor control after 15.5 months was 146 (range: 114-188) Gy10 in the CIS99 and 133 (range: 101-164) Gy10 in the BG model; however, the BG model predicted lower tumor control at long (≳20 months) follow-up times and gave a suboptimal fit to the data compared to the CIS99 model. CONCLUSIONS: Biologically motivated cure rate models allow adding the time component into TCP modeling without being restricted to the follow-up period which is the case for the Cox model. In practice, application of such models to the clinical setting could allow for adaption of treatment doses depending on whether local control should be achieved in the short or longer term
    corecore