67 research outputs found

    Atypical long-latency auditory event-related potentials in a subset of children with specific language impairment

    Get PDF
    It has been proposed that specific language impairment (SLI) is the consequence of low-level abnormalities in auditory perception. However, studies of long-latency auditory ERPs in children with SLI have generated inconsistent findings. A possible reason for this inconsistency is the heterogeneity of SLI. The intraclass correlation (ICC) has been proposed as a useful statistic for evaluating heterogeneity because it allows one to compare an individual's auditory ERP with the grand average waveform from a typically developing reference group. We used this method to reanalyse auditory ERPs from a sample previously described by Uwer, Albrecht and von Suchodoletz (2002). In a subset of children with receptive SLI, there was less correspondence (i.e. lower ICC) with the normative waveform (based on the control grand average) than for typically developing children. This poorer correspondence was seen in responses to both tone and speech stimuli for the period 100–228 ms post stimulus onset. The effect was lateralized and seen at right- but not left-sided electrodes

    Does congenital deafness affect the structural and functional architecture of primary visual cortex?

    Get PDF
    Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Diabetes mellitus: pathophysiological changes and therap

    New advances in understanding sensitive periods in brain development

    No full text
    Is a dog ever too old to learn new tricks? We review recent findings on sensitive periods in brain development, ranging from sensory processing to high-level cognitive abilities in humans. We conclude that there are multiple varieties of, and mechanisms underlying, these changes. However, many sensitive periods may be a consequence of the basic processes underlying postnatal functional brain development

    The Aqueous N-Phosphorylation and N-Thiophosphorylation of Aminonucleosides

    Get PDF
    We demonstrate N-phosphorylation and N-thiophosphorylation of unprotected aminonucleosides in aqueous media. N-Phosphorylations using phosphoric chloride and N-thiophosphorylations using thiophosphoryl chloride were explored as functions of pH using 5′-amino-5′-deoxyguanosine as substrate. These reagents were compared to phosphodichloridate and thiophosphodichloridate ions, and the methodology was applied to other aminonucleosides. S-Alkylations of the nucleoside N-thiophosphoramidates were investigated as functions of pH and alkylating agent
    • …
    corecore