125 research outputs found

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    The effect of urban ground covers on arthropods: An experiment.

    Get PDF
    Changes to the ground layer in urban areas are extensive, but the effects on arthropod fauna are poorly understood. We undertook a manipulative experiment to examine the response of arthropods to small-scale variation in ground covers commonly found in urban parks and gardens in Australia. The ground covers tested were bare ground, leaf litter, woodchips and grass, with plot sizes of 3.6 m2. Epigeic arthropods were sampled with pitfall traps and Tullgren funnels over 12 months following establishment of the treatments. All epigeic arthropods were sorted to order and the ants (Hymenoptera: Formicidae), beetles (Coleoptera), millipedes (Diplopoda) and slaters (Isopoda: Oniscidea) were examined at lower taxonomic levels. Diverse arthropods rapidly colonised previously cleared plots in all four treatments and were most abundant in grass plots. The diversity of ants and beetles was significantly different in different ground covers and tended to be most diverse in grass plots. Despite the treatments providing very different microclimates, the fauna studied did not show strong selection for a particular cover type overall. The abundance of grass cover in the surrounding area may have led to the grass plots having the greatest abundance of arthropods. These results have important implications for developing effective small-scale conservation efforts for arthropods in anthropogenically modified landscapes, especially for species with poor dispersal abilities.This research was conducted while B.N. was a recipient of an Australian Postgraduate Award and a Holsworth Wildlife Research Grant. Additional funding and support were provided by the Baker Foundation
    corecore