204 research outputs found

    Intensity distribution in rotational line spectra

    Get PDF
    Completely resolved Doppler-free rotational line spectra of six vibronic two-photon bands in benzene C6 H6 and C6 D6 are presented. The excited final states possess different excess energies in S1 (1567 to 2727 cm−1 ) and are embedded in dense manifolds of background states with differing densities of states (1<rho<60 1/cm−1 ). The bands are analyzed by a statistical procedure. The intensity distribution of several hundreds of lines of each band is investigated. It is found that all weakly perturbed bands display a similar, peaked intensity distribution while in strongly perturbed bands the number of lines decreases monotonically with increasing intensity. The origin of this difference is discussed in terms of coupling to the many background states. The Journal of Chemical Physics is copyrighted by The American Institute of Physics

    Prolongation on regular infinitesimal flag manifolds

    Full text link
    Many interesting geometric structures can be described as regular infinitesimal flag structures, which occur as the underlying structures of parabolic geometries. Among these structures we have for instance conformal structures, contact structures, certain types of generic distributions and partially integrable almost CR-structures of hypersurface type. The aim of this article is to develop for a large class of (semi-)linear overdetermined systems of partial differential equations on regular infinitesimal flag manifolds MM a conceptual method to rewrite these systems as systems of the form ~(Σ)+C(Σ)=0\tilde\nabla(\Sigma)+C(\Sigma)=0, where ~\tilde\nabla is a linear connection on some vector bundle VV over MM and C:VTMVC: V\rightarrow T^*M\otimes V is a (vector) bundle map. In particular, if the overdetermined system is linear, ~+C\tilde\nabla+C will be a linear connection on VV and hence the dimension of its solution space is bounded by the rank of VV. We will see that the rank of VV can be easily computed using representation theory.Comment: 35 pages; typos corrected and minor changes, final version to appear in International Journal of Mathematic

    Irradiation of benzene molecules by ion-induced and light-induced intense fields

    Get PDF
    Benzene, with its sea of delocalized π\pi-electrons in the valence orbitals, is identified as an example of a class of molecules that enable establishment of the correspondence between intense ion-induced and laser-light-induced fields in experiments that probe ionization dynamics in temporal regimes spanning the attosecond and picosecond ranges.Comment: 4 ps figure

    Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy

    Get PDF
    OBJECTIVE—Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure

    Quadrupole Moment Measurements of TSD1 and TSD2 Bands in \u3csup\u3e167\u3c/sup\u3eLu

    Get PDF
    The triaxial strongly deformed (TSD) bands in 167Lu were populated by the 123Sb(48Ca, 4n) reaction with a beam energy of 203 MeV. Gamma rays, requiring fivefold or more in prompt coincidence, were detected with the Gammasphere spectrometer. Of particular interests are TSD bands 1 and 2 which have previously been interpreted as zero phonon and one phonon wobbling bands, respectively. Using the Doppler shift attenuation method (DSAM), a preliminary transition quadrupole moment of 6.9+0.3−0.3 eb was extracted for the TSD1 band. Data analysis continues for TSD2 which is considerably more weakly populated

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing
    corecore