187 research outputs found

    Diseño, análisis y estabilidad de métodos iterativos con memoria para la resolución de ecuaciones y sistemas no lineales

    Full text link
    [ES] El diseño de métodos iterativos para resolver ecuaciones y sistemas de ecuaciones no lineales es una tarea importante y desafiante en el campo del Análisis Numérico. La no linealidad es una característica de muchos de los fenómenos físicos. Mecánica de fluidos y plasma, dinámica de gases, reacciones químicas, combustión, ecología, biomecánica, problemas de modelado económico, teoría del transporte y muchos otros fenómenos están todos gobernados inherentemente por ecuaciones no lineales. Por esta razón, una proporción cada vez mayor de la investigación matemática moderna se dedica al análisis de sistemas y procesos no lineales. En una era caracterizada por la disponibilidad de grandes cantidades de datos, el procesado y análisis de esta información se traduce de forma directa en la resolución de problemas cuya dimensión es cada vez mayor. Aunque en las últimas décadas se ha producido un desarrollo exponencial en la computación, sigue siendo esencial el diseño de algoritmos iterativos que garanticen la convergencia a la solución de un problema de forma rápida y eficiente. Siguiendo estas premisas, el objetivo fundamental que se persigue con el diseño de nuevos métodos iterativos, siendo también uno de los principales objetivos de la presente Tesis Doctoral, es la aproximación de soluciones de problemas no lineales garantizando un cierto equilibrio entre la velocidad con que se obtiene dicha aproximación, la fiabilidad de la misma y el coste computacional requerido en el conjunto de todo el proceso iterativo. Poder medir o cuantificar este equilibrio es, por tanto, una de las piezas esenciales de todo este proceso. Por medio del orden de convergencia, somos capaces de comparar la velocidad con que los esquemas iterativos se aproximan a la solución buscada. El coste computacional requerido a cada iteración del proceso es directamente proporcional al número de iteraciones que se necesitan para aproximar esta solución. Por tanto, acelerar la convergencia de un método se convierte en una necesidad en el diseño de esquemas eficientes. Por otro lado, todo algoritmo iterativo requiere de al menos un punto inicial para comenzar el proceso de cálculo de las iteraciones sucesivas. Por este motivo, el estudio de la influencia de las estimaciones iniciales en la convergencia de un método es también de una gran relevancia, ya que permite determinar la estabilidad de éste en función de los iterados iniciales. Este estudio se realiza utilizando herramientas de dinámica discreta, tanto real como compleja, para determinar, además de otras caracterizaciones, los puntos iniciales más adecuados y los métodos más estables de una familia de esquemas iterativos. El análisis numérico y dinámico realizado en esta memoria hace posible la propuesta de métodos iterativos eficientes que aproximen soluciones de problemas multidimensionales no lineales y ecuaciones en derivadas parciales de forma eficaz. A partir del estudio completo desarrollado utilizando las herramientas anteriormente descritas, presentamos esta Tesis Doctoral para la obtención del título de Doctora en Matemáticas.[EN] The design of iterative methods for solving nonlinear equations and nonlinear systems is an important and challenging task in the Numerical Analysis. Nonlinearity is a characteristic of many of the physical phenomena. Fluid and plasma mechanics, gas dynamics, chemical reactions, combustion, ecology, biomechanics, economic modeling problems, transport theory and many other phenomena are all inherently governed by nonlinear equations. For this reason, an increasing proportion of mathematical modern research is devoted to the analysis of systems and nonlinear processes. In a period characterized by the availability of large amounts of data, the processing and analysis of this information translates directly into the resolution of problems whose dimension is increasing. Although there has been an exponential development in computing in the last decades, it is still essential to design iterative algorithms that guarantee the convergence to the solution of a problem in a fast and efficient way. Following these assumptions, the main goal followed in the design of new iterative methods, being also one of the main objectives of this Doctoral Thesis, is the approximation of the solutions of nonlinear problems ensuring a certain balancing between the speed at which this approximation is obtained, the reliability of the approximation and the computational cost required in the whole iterative process. Being able to measure or quantify this balance is therefore one of the essential parts of this whole process. By means of the order of convergence, we are able to compare the speed with which the iterative schemes approximate the requested solution. The required computational cost for each iteration of the process is directly proportional to the number of iterations needed to approximate this solution. Therefore, accelerating the convergence of a method becomes a need in the design of efficient schemes. On the other hand, any iterative algorithm requires at least a starting point to begin the calculation of the successive iterations. For this reason, the study of the influence of initial estimates on the convergence of a method is also of high relevance, since it allows to determine the stability of the method depending on the initial iterations. This study is carried out using tools of discrete dynamics, both real and complex, to determine, in addition to other characterizations, the most suitable starting points and the most stable methods in a family of iterative schemes. The numerical and dynamical analysis carried out in this work makes it possible to propose efficient iterative methods that approximate solutions to nonlinear multidimensional problems and partial differential equations in an effective way. Based on the complete study developed using the tools described above, we present this Doctoral Thesis for gaining the title of Doctor in Mathematics.[CA] El diseny de mètodes iteratius per resoldre equacions i sistemes d'equacions no lineals es una tasca important i desafiant al domini de l'Anàlisi Numèric. La no linealitat és una característica de molts dels fenòmens físics. Mecànica de fluids i plasma, dinàmica de gasos, reaccions químiques, combustió, ecologia, biomecànica, problemes de models econòmics, teoria del transport i molts altres fenòmens estan tots governats inherentment per equacions no lineals. Per aquest motiu, una proporció cada vegada major de la investigació matemàtica moderna es dedica a l'anàlisi de sistemes i processos no lineals. En una era caracteritzada per la disponibilitat de grans quantitats de dades, el processat i anàlisi d'aquesta informació es tradueix de forma directa en la resolució de problemes la dimensió dels quals es cada vegada major. Malgrat que a les últimes dècades s'ha produït un desenvolupament exponencial a la computació, segueix sent essencial el diseny d'algorismes iteratius que garanteixen la convergència a la solució d'un problema de forma ràpida i eficient. Seguint aquestes premisses, l'objectiu fonamental que es persegueix amb el disseny de nous mètodes iteratius, sent també un dels principals objectius de la present Tesi Doctoral, és l'aproximació de solucions de problemes no lineals garantint un cert equilibri entre la velocitat amb què obtenen aquesta aproximació, la fiabilitat de la mateixa i el cost computacional requerit al conjunt de tot el procés iteratiu. Poder medir o quantificar aquest equilibri és, per tant, una de les peces essencials de tot aquest procés. Mitjançant l'ordre de convergència, tenim la capacitat de comparar la velocitat amb la qual els esquemes iteratius s'aproximen a la solució buscada. El cost computacional requerit a cada iteració del procés és directament proporcional al nombre d'iteracions que es necessiten per a aproximar aquesta solució. Per tant, accelerar la convergència d'un mètode es converteix en una necessitat al disseny d'esquemes eficients. D'una altra banda, tot algorisme iteratiu requereix d'almenys un punt inicial per començar el procés de càlcul de les iteracions successives. Per aquest motiu, l'estudi de la influència de les estimacions inicials a la convergència d'un mètode és també molt rellevant, ja que permet determinar l'estabilitat d'aquest en funció dels iterats inicials. Aquest estudi es realitza utilitzant eines de dinàmica discreta, tant real com complexa, per determinar, a més d'altres caracteritzacions, els punts inicials més adients i els mètodes més estables d'una familia d'esquemes iteratius. L'anàlisi numèric i dinàmic realitzat en aquesta memòria fa possible la proposta de mètodes iteratius eficients que aproximen solucions de problemes multidimensionals no lineals i equacions en derivades parcials de forma eficaç. A partir de l'estudi complet desenvolupat utilitzant les eines descrites anteriorment, presentem aquesta Tesi Doctoral per a l'obtenció del títol de Doctora en Matemàtiques.Garrido Saez, N. (2020). Diseño, análisis y estabilidad de métodos iterativos con memoria para la resolución de ecuaciones y sistemas no lineales [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149573TESI

    Iterative schemes for finding all roots simultaneously of nonlinear equations

    Get PDF
    In this paper, we propose a procedure that can be added to any iterative scheme in order to turn it into an iterative method for approximating all roots simultaneously of any nonlinear equations. By applying this procedure to any iterative method of order p, we obtain a new scheme of order of convergence 2p. Some numerical tests allow us to confirm the theoretical results and to compare the proposed schemes with other known methods for simultaneous roots of polynomial and non-polynomial functions

    Memory in the iterative processes for nonlinear problems

    Get PDF
    In this paper, we study different ways for introducing memory to a parametric family of optimal two-step iterative methods. We study the convergence and the stability, by means of real dynamics, of the methods obtained by introducing memory in order to compare them. We also perform several numerical experiments to see how the methods behave

    Design and Complex Dynamics of Potra–Pták-Type Optimal Methods for Solving Nonlinear Equations and Its Applications

    Get PDF
    In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are tested on some numerical examples, and the results are compared with some known methods of the corresponding order. It is proved that the results obtained from the proposed methods are compatible with other methods. The proposed methods are tested on some problems related to engineering and science. Furthermore, applying these methods on quadratic and cubic polynomials, their stability is analyzed by means of their basins of attraction

    Impact on stability by the use of memory in Traub-type schemes

    Get PDF
    [EN] In this work, two Traub-type methods with memory are introduced using accelerating parameters. To obtain schemes with memory, after the inclusion of these parameters in Traub's method, they have been designed using linear approximations or the Newton's interpolation polynomials. In both cases, the parameters use information from the current and the previous iterations, so they define a method with memory. Moreover, they achieve higher order of convergence than Traub's scheme without any additional functional evaluations. The real dynamical analysis verifies that the proposed methods with memory not only converge faster, but they are also more stable than the original scheme. The methods selected by means of this analysis can be applied for solving nonlinear problems with a wider set of initial estimations than their original partners. This fact also involves a lower number of iterations in the process.This research was partially supported by Ministerio de Ciencia, Innovacion y Universidades under grants PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE).Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2020). Impact on stability by the use of memory in Traub-type schemes. Mathematics. 8(2):1-16. https://doi.org/10.3390/math8020274S11682Shacham, M. (1989). An improved memory method for the solution of a nonlinear equation. Chemical Engineering Science, 44(7), 1495-1501. doi:10.1016/0009-2509(89)80026-0Balaji, G. V., & Seader, J. D. (1995). Application of interval Newton’s method to chemical engineering problems. Reliable Computing, 1(3), 215-223. doi:10.1007/bf02385253Shacham, M. (1986). Numerical solution of constrained non-linear algebraic equations. International Journal for Numerical Methods in Engineering, 23(8), 1455-1481. doi:10.1002/nme.1620230805Shacham, M., & Kehat, E. (1973). Converging interval methods for the iterative solution of a non-linear equation. Chemical Engineering Science, 28(12), 2187-2193. doi:10.1016/0009-2509(73)85008-0Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047Argyros, I. K., Cordero, A., Magreñán, Á. A., & Torregrosa, J. R. (2017). Third-degree anomalies of Traub’s method. Journal of Computational and Applied Mathematics, 309, 511-521. doi:10.1016/j.cam.2016.01.060Chicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075Chicharro, F., Cordero, A., & Torregrosa, J. (2015). Dynamics and Fractal Dimension of Steffensen-Type Methods. Algorithms, 8(2), 271-279. doi:10.3390/a8020271Scott, M., Neta, B., & Chun, C. (2011). Basin attractors for various methods. Applied Mathematics and Computation, 218(6), 2584-2599. doi:10.1016/j.amc.2011.07.076Steffensen, J. F. (1933). Remarks on iteration. Scandinavian Actuarial Journal, 1933(1), 64-72. doi:10.1080/03461238.1933.10419209Wang, X., & Zhang, T. (2012). A new family of Newton-type iterative methods with and without memory for solving nonlinear equations. Calcolo, 51(1), 1-15. doi:10.1007/s10092-012-0072-2Džunić, J., & Petković, M. S. (2014). On generalized biparametric multipoint root finding methods with memory. Journal of Computational and Applied Mathematics, 255, 362-375. doi:10.1016/j.cam.2013.05.013Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2014). Multipoint methods for solving nonlinear equations: A survey. Applied Mathematics and Computation, 226, 635-660. doi:10.1016/j.amc.2013.10.072Campos, B., Cordero, A., Torregrosa, J. R., & Vindel, P. (2015). A multidimensional dynamical approach to iterative methods with memory. Applied Mathematics and Computation, 271, 701-715. doi:10.1016/j.amc.2015.09.056Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2019). Dynamics of iterative families with memory based on weight functions procedure. Journal of Computational and Applied Mathematics, 354, 286-298. doi:10.1016/j.cam.2018.01.019Chicharro, F. I., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2017). King-Type Derivative-Free Iterative Families: Real and Memory Dynamics. Complexity, 2017, 1-15. doi:10.1155/2017/2713145Magreñán, Á. A., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2014). Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. Mathematics and Computers in Simulation, 105, 49-61. doi:10.1016/j.matcom.2014.04.006Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-141. doi:10.1090/s0273-0979-1984-15240-6Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Family of fourth-order optimal classes for solving multiple-root nonlinear equations

    Get PDF
    [EN] We present a new iterative procedure for solving nonlinear equations with multiple roots with high efficiency. Starting from the arithmetic mean of Newton's and Chebysev's methods, we generate a two-step scheme using weight functions, resulting in a family of iterative methods that satisfies the Kung and Traub conjecture, yielding an optimal family for different choices of weight function. We have performed an in-depth analysis of the stability of the family members, in order to select those members with the highest stability for application in solving mathematical chemistry problems. We show the good characteristics of the selected methods by applying them on four relevant chemical problems.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was partially supported by Grant PGC2018-095896-B-C22, funded by MCIN/AEI/10.13039/5011000113033 by "ERDF A way of making Europe", European Union; and by the internal research project ADMIREN of Universidad Internacional de La Rioja (UNIR).Chicharro, FI.; Garrido-Saez, N.; Jerezano, JH.; Pérez-Palau, D. (2023). Family of fourth-order optimal classes for solving multiple-root nonlinear equations. Journal of Mathematical Chemistry. 61(4):736-760. https://doi.org/10.1007/s10910-022-01429-573676061

    An iterative scheme to obtain multiple solutions simultaneously

    Get PDF
    [EN] In this manuscript, we propose an iterative step that, combined with any other method, allows us to obtain an iterative scheme for approximating the simple roots of a polynomial simultaneously. We show that adding this step, the order of convergence of the new scheme is tripled respect to the original one. With this idea, we also present an iterative method that obtains multiple solutions of any nonlinear equation simultaneously, without the need to know the multiplicity of the solutions. We conclude with several numerical experiments to confirm the behaviour of the proposed methods.& COPY; 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).This research was partially supported by Universitat Politecnica de Valencia Contrato Predoctoral PAID-01-20-17 (UPV), Spain.Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR.; Triguero-Navarro, P. (2023). An iterative scheme to obtain multiple solutions simultaneously. Applied Mathematics Letters. 145. https://doi.org/10.1016/j.aml.2023.10873814

    Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems

    Full text link
    [EN] In this work, we modify the iterative structure of Traub's method to include a real parameter alphaα \alpha . A parametric family of iterative methods is obtained as a generalization of Traub, which is also a member of it. The cubic order of convergence is proved for any value of alphaα \alpha . Then, a dynamical analysis is performed after applying the family for solving a system cubic polynomials by means of multidimensional real dynamics. This analysis allows to select the best members of the family in terms of stability as a preliminary study to be generalized to any nonlinear function. Finally, some iterative schemes of the family are used to check numerically the previous developments when they are used to approximate the solutions of academic nonlinear problems and a chemical diffusion reaction problem.ERDF A way of making Europe, Grant/Award Number: PGC2018-095896-B-C22; MICoCo of Universidad Internacional de La Rioja (UNIR), Grant/Award Number: PGC2018-095896-B-C22Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2023). Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems. Mathematical Methods in the Applied Sciences. 1-14. https://doi.org/10.1002/mma.937111

    Generalized high-order classes for solving nonlinear systems and their applications

    Get PDF
    [EN] A generalized high-order class for approximating the solution of nonlinear systems of equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations, we propose an extension to nonlinear systems of equations holding the same order of convergence but replacing the Jacobian by a divided difference in the weight functions for systems. The proposed GH family of methods is designed from this fourth-order family using both the composition and the weight functions technique. The resulting family has order of convergence 9. The performance of a particular iterative method of both families is analyzed for solving different test systems and also for the Fisher's problem, showing the good performance of the new methods.This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana, under grants PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and PROMETEO/2016/089, respectively.Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). Generalized high-order classes for solving nonlinear systems and their applications. Mathematics. 7(12):1-14. https://doi.org/10.3390/math7121194S114712Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2014). Multipoint methods for solving nonlinear equations: A survey. Applied Mathematics and Computation, 226, 635-660. doi:10.1016/j.amc.2013.10.072Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532Sharma, J. R., & Arora, H. (2016). Improved Newton-like methods for solving systems of nonlinear equations. SeMA Journal, 74(2), 147-163. doi:10.1007/s40324-016-0085-xAmiri, A., Cordero, A., Taghi Darvishi, M., & Torregrosa, J. R. (2018). Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Applied Mathematics and Computation, 323, 43-57. doi:10.1016/j.amc.2017.11.040Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zChicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). Wide stability in a new family of optimal fourth‐order iterative methods. Computational and Mathematical Methods, 1(2), e1023. doi:10.1002/cmm4.1023FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.xSharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Escape Room: An active methodology for postgraduate teaching

    Get PDF
    Given the lack or decrease in the motivation of university students, teaching and with it the University finds itself in the position of putting into practice new, more active and motivating methodologies that allow students to have a more protagonist role in the teaching process and learning than they have had so far. This article presents an experience that consists of the design of an online Escape room framed in the Master in Special Education. The objective is to motivate students and facilitate learning of the subject.Ante la falta o disminución de la motivación de los alumnos universitarios la enseñanza, y con ello la Universidad se ve en la tesitura de poner en práctica nuevas metodologías más activas y motivantes que permitan a los alumnos tener un rol más protagonista en el proceso de enseñanza y aprendizaje que el que han tenido hasta ahora. En el este artículo se expone una experiencia que consiste en el diseño de un escape room on line enmarcado en el Máster en Educación Especial. Se plantea como objetivo motivar a los alumnos y facilitar el aprendizaje de la asignatura
    corecore