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Abstract: In this paper, using the idea of weight functions on the Potra–Pták method, an optimal
fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods
are proposed. These methods are tested on some numerical examples, and the results are compared
with some known methods of the corresponding order. It is proved that the results obtained from the
proposed methods are compatible with other methods. The proposed methods are tested on some
problems related to engineering and science. Furthermore, applying these methods on quadratic and
cubic polynomials, their stability is analyzed by means of their basins of attraction.

Keywords: nonlinear equations; Potra–Pták method; optimal methods; weight function; basin of
attraction; engineering applications
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1. Introduction

For solving nonlinear equations iteratively, the Newton’s method given by

xn+1 = xn −
f (xn)

f ′(xn)

is one of the most commonly used methods. The efficiency index as defined by Ostroswki in [1],
which relates the order of convergence of a method p with the number of function evaluations per
iteration d, is given by the expression p1/d. Newton’s method is quadratically convergent and requires
two function evaluations per iteration and, thereby, has the efficiency index value of 21/2 ≈ 1.414.
Numerous methods have appeared giving higher order of convergence or better efficiency. One of
the recent strategies to increase the order of the methods is the use of weight functions [2–5]. In this
regard, Sharma and Behl [6] presented the fourth order method:

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn −
(
− 1

2 + 3
8

f ′(yn)
f ′(xn)

+ 9
8

f ′(xn)
f ′(yn)

)
f (xn)
f ′(xn)

.
(1)

Mathematics 2019, 7, 942; doi:10.3390/math7100942 www.mdpi.com/journal/mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/270138618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9116-2870
https://orcid.org/0000-0002-7903-8591
http://dx.doi.org/10.3390/math7100942
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/10/942?type=check_update&version=2


Mathematics 2019, 7, 942 2 of 21

Similarly, Sharifi et al. [7] used weight functions on the third order Heun’s method and proposed the
fourth order method

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn − f (xn)
4

(
1

f ′(xn)
+ 3

f ′(yn)

)(
1 + 3

8

(
f ′(yn)
f ′(xn)

− 1
)2
− 69

64

(
f ′(yn)
f ′(xn)

− 1
)3

+ f (xn)
f ′(yn)

)
.

(2)

According to Kung and Traub [8], an iterative method is said to be optimal if its order is 2d−1, where d
is the number of function evaluations per iteration. Notice that Newton’s method as well as (1) and (2)
are all optimal.

Potra and Pták [9], as an attempt to improve Newton’s method, gave the method

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn − f (xn)+ f (yn)
f ′(xn)

.
(3)

This method is cubically convergent but is not optimal, as it requires three function evaluations
per iteration.

The aim, in the present paper, is to further investigate the method (3). Precisely, we use weight
functions and improve the order of convergence of (3). We do it in three ways which correspond to the
methods of orders 4, 6 and 8. Out of these, the methods with orders 4 and 8 are optimal.

Dynamics of a rational operator give important information about the convergence, efficiency
and stability of the iterative methods. During the last few decades, many researchers, e.g., [10–16]
and references therein, study the dynamical behavior of rational operators associated with iterative
methods. Furthermore, there is an extensive literature [17–21] to understand and implement further
results on the dynamics of rational functions. In this paper, we also analyze the dynamical behavior
of the methods that we have developed in this paper. Furthermore, at the end of this work, the
basins of attraction are also presented and compared among the proposed and other methods of the
corresponding order.

The remaining part of the paper is organized as follows. In Section 2, the development of the
methods and their convergence analysis are given. In Section 3, the proposed methods are tested on
some functions, and the results are compared with other methods in the head of Numerical Examples.
In Section 4, the proposed methods are tested on some engineering and science related designs.
Section 5 is devoted to analyze the stability of the introduced methods by means of complex dynamics.
In this sense, the study of the rational function resulting from the application of the methods to several
nonlinear functions is developed, and their basins of attraction are represented. Finally, Section 6
covers the conclusions of the research.

2. Development of Methods and Their Convergence Analysis

In this section, the methods of order four, six and eight are introduced, and its convergence
is analyzed.

2.1. Optimal Fourth Order Method

Based on the Potra–Pták method (3), we propose the following two-step method using a weight
function, whose iterative expression is

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn − w(tn)
f (xn)+ f (yn)

f ′(xn)
,

(4)

where w(tn) = a1 + a2tn + a3t2
n and tn = f (yn)

f (xn)
. The convergence of (4) is proved in the

following theorem.
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Theorem 1. Let f be a real or complex valued function defined in the interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, the method (4) is fourth order of convergence if a1 = 1, a2 = 0 and a3 = 2.

Proof. We denote cj =
f (j)(α)
j! f ′(α) . Let en = xn − α be the error in xn. Then, Taylor’s series expansion of

f (xn) and f ′(xn) about α gives

f (xn) = f ′(α)
(

en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + c6e6
n + c7e7

n + c8e8
n + O(e9

n)
)

(5)

and
f ′(xn) = f ′(α)

(
1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n + 7c7e6

n + 8c8e7
n + O(e8

n)
)

. (6)

Let dn = yn − α, then, from the first equation of (4), we get

dn = c2e2
n − 2

(
c2

2 − c3
)

e3
n +

(
4c3

2 − 7c2c3 + 3c4
)

e4
n +

(
−8c4

2 + 20c3c2
2 − 10c4c2 − 6c2

3 + 4c5
)

e5
n

+
(
16c5

2 − 52c3c3
2 + 28c4c2

2 +
(
33c2

3 − 13c5
)

c2 − 17c3c4 + 5c6
)

e6
n

−2
(

16c6
2 − 64c3c4

2 + 36c4c3
2 + 9

(
7c2

3 − 2c5
)

c2
2 + (8c6 − 46c3c4) c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

)
e7

n

+

(
64c7

2 − 304c3c5
2 + 176c4c4

2 +
(
408c2

3 − 92c5
)

c3
2 + (44c6 − 348c3c4) c2

2

+75c2
3c4 − 31c4c5 − 27c3c6 + c2

(
−135c3

3 + 118c5c3 + 64c2
4 − 19c7

)
+ 7c8

)
e8

n + O(e9
n)

so that, using Taylor’s series expansion of f (yn) about α, we get

f (yn) = f (dn + α)

= f ′(α)
[

c2e2
n − 2(c2

2 − c3)e3
n +

(
5c3

2 − 7c2c3 + 3c4
)

e4
n − 2

(
6c4

2 − 12c3c2
2 + 5c4c2 + 3c2

3 − 2c5
)

e5
n

+
(

28c5
2 − 73c3c3

2 + 34c4c2
2 +

(
37c2

3 − 13c5
)

c2 − 17c3c4 + 5c6

)
e6

n

−2
(

32c6
2 − 103c3c4

2 + 52c4c3
2 +

(
80c2

3 − 22c5
)

c2
2 + (8c6 − 52c3c4) c2

−9c3
3 + 6c2

4 + 11c3c5 − 3c7

)
e7

n +

(
144c7

2 − 552c3c5
2 + 297c4c4

2 + 2
(
291c2

3 − 67c5
)

c3
2

+ (54c6 − 455c3c4) c2
2 + 75c2

3c4 − 31c4c5 − 27c3c6 + c2
(
−147c3

3 + 134c5c3 + 73c2
4 − 19c7

)
+7c8

)
e8

n + O(e9
n)
]
.

(7)

Now, from (5) and (7), we get

tn =
f (yn)
f (xn)

= c2en + (−3c2
2 + 2c3)e2

n + (8c3
2 − 10c2c3 + 3c4)e3

n +
(
−20c4

2 + 37c2
2c3 − 14c2c4 − 8c2

3 + 4c5
)

e4
n

+
(
48c5

2 − 118c3
2c3 + 51c2

2c4 + 55c2c2
3 − 18c2c5 − 22c3c4 + 5c6

)
e5

n

+

(
− 112c6

2 + 344c3c4
2 − 163c4c3

2 +
(
65c5 − 252c2

3
)

c2
2 + 2 (75c3c4 − 11c6) c2

+26c3
3 − 15c2

4 − 28c3c5 + 6c7

)
e6

n + O(e7
n).

(8)

Therefore, using the results obtained above in the second equation of (4), we get

en+1 = (1− a1) en − a2c2e2
n +

(
2a1c2

2 + 3a2c2
2 − 2a2c3 − a3c2

2
)

e3
n

+
(
−9a1c3

2 + 7a1c2c3 − 6a2c3
2 + 10a2c2c3 − 3a2c4 + 6a3c3

2 − 4a3c2c3
)

e4
n + O(e5

n).
(9)
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In order to obtain fourth order of convergence, in view of (9), we must have

1− a1 = 0,
a2 = 0,

2a1c2
2 + 3a2c2

2 − 2a2c3 − a3c2
2 = 0,

which gives a1 = 1, a2 = 0 and a3 = 2. Therefore, from (9), the error equation of the method (4) becomes

en+1 = (3c3
2 − c2c3)e4

n +O
(

e5
n

)
,

and the assertion follows.

In view of Theorem 1, the proposed fourth order method is

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,
(10)

which requires three function evaluations per iteration and consequently is optimal. In addition, the
efficiency index of (10) is 1.5874, which is higher than that of (3) having an efficiency index of 1.442.

2.2. Sixth Order Method

Using the results obtained in (10), we propose a new method defined by

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − w1(tn)
f (zn)
f ′(xn)

,

(11)

where w1(tn) = b1 + b2tn is a new weight function and tn is as in (4). The order of convergence is
shown in the following result.

Theorem 2. Let f be a real or complex valued function defined in an interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, (11) has a sixth order of convergence if b1 = 1 and b2 = 2.

Proof. Let θn = zn − α. Then, from second equation of (11), we obtain

θn = (3c3
2 − c2c3)e4

n − 2
(
8c4

2 − 10c2
2c3 + c2

3 + c2c4
)

e5
n

+(46c5
2 − 114c3

2c3 + 30c2
2c4 + 42c2c2

3 − 3c2c5 − 7c3c4)e6
n + O(e7

n).
(12)

Now, by expanding f (zn) about α using Equation (12), we obtain

f (zn) = f (θn + α)

= f ′(α)[
(
3c3

2 − c2c3
)

e4
n − 2

(
8c4

2 − 10c2
2c3 + c2

3 + c2c4
)

e5
n

+
(
46c5

2 − 114c3
2c3 + 30c2

2c4 + 42c2c2
3 − 3c2c5 − 7c3c4

)
e6

n + O(e7
n)].

(13)

Therefore, using (6), (8) and (13) in the third equation of (11), we obtain

en+1 = (1− b1)c2(3c2
2 − c3)e4

n
+
(
c4

2(22b1 − 3b2 − 16) + c2
2c3(−22b1 + b2 + 20) + 2(b1 − 1)c2c4 + 2(b1 − 1)c2

3
)

e5
n

+
(
c5

2(−90b1 + 31b2 + 46) + c3
2c3(167b1 − 31b2 − 114) + 2c2

2c4(−17b1 + b2 + 15)
+c2(c2

3(−49b1 + 4b2 + 42) + 3(b1 − 1)c5) + 7(b1 − 1)c3c4
)
e6

n + O(e7
n).

(14)
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In order to obtain sixth order of convergence, the coefficients of e4
n and e5

n must vanish in (14), i.e.,
b1 = 1 and b2 = 2. Therefore, the error equation of the method (11) becomes

en+1 = c2

(
18c4

2 − 9c2
2c3 + c2

3

)
e6

n +O
(

e7
n

)
,

and the assertion follows.

In view of Theorem 2, the following is the sixth order method

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn −
(

1 + 2 f (yn)
f (xn)

)
f (zn)
f ′(xn)

.

(15)

2.3. Optimal Eighth Order Method

Notice that the method (15) is not optimal as it requires four function evaluation per iteration to
achieve sixth order of convergence. Its efficiency index is 1.5651, which is less than that of the fourth
order method (10). However, an eighth order method is obtained by (10) using an additional Newton
step. The resulting iterative scheme is

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(zn)

.

(16)

Nevertheless, this method requires five function evaluation per iteration, so that its efficiency index
reduces to 1.5157, and, moreover, it is not optimal. Towards making the method (16) more efficient
and optimal, we approximate f ′(z) as

f ′(zn) ≈
f ′(xn)

J(tn, un) · G(sn)
, (17)

where

tn =
f (yn)

f (xn)
, un =

f (zn)

f (xn)
, sn =

f (zn)

f (yn)
.

Here, J and G are some appropriate weight functions of two variables and one variable, respectively.
This type of approximations was done by Matthies et al. in [22]. Accordingly, we propose the
following method:

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(xn)

· J(tn, un) · G(sn),

(18)

where tn, un, and sn, are as in (17). For the method (18), we take the functions J and G as

J(tn, un) =
1 + 2tn + (β + 2)un + 3t2

n
1 + βun

(19)

and
G(sn) =

1 + λsn

1 + (λ− 1)sn
, (20)

where β and λ belong to C. We prove the following result.
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Theorem 3. Let f be a real or complex valued function defined on some interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, (18) is an eighth order of convergence for the functions J and G given by (19) and (20), respectively.

Proof. In view of (5) and (13), we obtain

un = f (zn)
f (xn)

=
(
3c3

2 − c2c3
)

e3
n +

(
−19c4

2 + 21c2
2c3 − 2c2c4 − 2c2

3
)

e4
n

+
(
65c5

2 − 138c3
2c3 + 32c2

2c4 + 45c2c2
3 − 3c2c5 − 7c3c4

)
e5

n + O(e6
n).

Similarly, (7) and (13) yield

sn = f (zn)
f (yn)

=
(
3c2

2 − c3
)

e2
n − 2

(
5c3

2 − 6c2c3 + c4
)

e3
n +

(
11c4

2 − 44c2
2c3 + 17c2c4 + 11c2

3 − 3c5
)

e4
n

+
(
56c5

2 + 28c3
2c3 − 56c2

2c4 − 60c2c2
3 + 22c2c5 + 30c3c4 − 4c6

)
e5

n + O(e6
n).

Consequently, (19) gives

J(tn, un) = 1 + 2c2en +
(
4c3 − 3c2

2
)

e2
n +

(
4c3

2 − 10c2c3 + 6c4
)

e3
n

+
(
−3(2β + 1)c4

2 + 2(β + 10)c2
2c3 − 14c2c4 − 8c2

3 + 8c5
)

e4
n

+

(
(47β− 38)c5

2 − (57β + 14)c3
2c3 + 4(β + 7)c2

2c4

+2c2
(
4(β + 4)c2

3 − 9c5
)
− 22c3c4 + 10c6

)
e5

n + O(e6
n),

(21)

and (20) gives

G(sn) = 1 +
(
3c2

2 − c3
)

e2
n − 2

(
5c3

2 − 6c2c3 + c4
)

e3
n

+
(
(20− 9λ)c4

2 + 2(3λ− 25)c2
2c3 − (λ− 12)c2

3 + 17c2c4 − 3c5
)

e4
n

+2
(
(30λ− 2)c5

2 + (60− 46λ)c3
2c3 + 2(3λ− 17)c2

2c4 + c2
(
6(2λ− 7)c2

3 + 11c5
)

+(17− 2λ)c3c4 − 2c6

)
e5

n + O(e6
n).

(22)

Now, using the values from (6), (12), (13), (21), and (22) in (18), the error equation of the method is

en+1 = c2

(
3c2

2 − c3

) (
c4

2(6β + 9λ + 9)− 2c2
2c3(β + 3λ + 4) + c2c4 + c2

3λ
)

e8
n +O

(
e9

n

)
,

which gives the eighth order of convergence.

3. Numerical Examples

In this section, we test the performance of the methods proposed in Section 2 with the help of some
numerical examples. We compare the results obtained with the known methods of the corresponding
order. We consider the following nonlinear equations and initial guesses:

• f1(x) = sin2 x− x2 + 1, x0 = 2,
• f2(x) = ln(1 + x2) + exp(x2 − 3x) sin x, x0 = 2,
• f3(x) = x2 − (1− x)5, x0 = 1,
• f4(x) = x2 − exp(x)− 3x + 2, x0 = 1,
• f5(x) =

√
x2 + 2x + 5− 2 sin x− x2 + 3, x0 = 2.

In the previous section, we have proved the theoretical order of convergence of various methods.
For practical purposes, we can test numerically the order of convergence of these methods by using
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Approximated Computational Order of Convergence (or ACOC), defined by Cordero and Torregrosa [23].
They defined the ACOC of a sequence {xk}, k ≥ 0 as

ACOC =
log (|xk+1 − xk| / |xk − xk−1|)

log (|xk − xk−1| / |xk−1 − xk−2|)
. (23)

The use of ACOC, given by (23), serves as a practical check on the theoretical error calculations.
We apply our proposed methods and other existing methods as discussed in the following

subsections on each of the test functions. Various results of up to four iterations are observed, and
we compare the results obtained at the 4th iteration among different methods of the corresponding
order and shown in Tables 1–3. For a particular test function, we take the same initial guess x0

for each of the methods under consideration. We compare the approximate error ∆xn ≡ |xn −
xn−1|, the approximate solution xn, the absolute value of corresponding functional value | f (xn)|, and
approximated computational order of convergence (ACOC) at n = 4. In the tables, “NC” stands for
no convergence of the method. We use Mathematica 9.0 for the calculations.

3.1. Comparison of the Fourth Order Method

Let us denote our method (10) by M41. We shall compare this method with

• Sharma and Behl method (1), denoted by M42,
• Sharifi et al. method (2), denoted by M43,
• Jarratt’s method [24], denoted by M44 and given by

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn −
(

3 f ′(yn)+ f ′(xn)
6 f ′(yn)−2 f ′(xn)

)
f (xn)
f ′(xn)

,

• Kung–Traub [8] method, denoted by M45, and given by

yn = xn − f (xn)
f ′(xn)

,

xn+1 = yn −
(

f (xn)· f (yn)
( f (xn)− f (yn))2

)
f (xn)
f ′(xn)

.

All the methods M4i, i = 1, 2, 3, 4, 5 are optimal. Table 1 records the performance of all
these methods.

Table 1. Comparison of numerical results of fourth order methods at the 4th iteration.

f1 f2 f3 f4 f5

M41 8.7309 × 10−26 2.7730 × 10−55 9.9454 × 10−30 1.2399 × 10−65 9.2139 × 10−82

M42 1.1188 × 10−27 2.9815 × 10−28 1.0915 × 10−24 7.7434 × 10−72 3.5851 × 10−101

∆xn M43 1.1523 × 10−23 NC 6.1887 × 10−13 1.3049 × 10−15 3.6376 × 10−49

M44 2.0493 × 10−32 2.0594 × 10−31 1.1971 × 10−20 1.5448 × 10−71 1.1488 × 10−97

M45 4.0043 × 10−28 2.8464 × 10−57 2.4018 × 10−30 4.7295 × 10−65 2.8215 × 10−81

M41 1.4045 −7.8835 × 10−218 0.3460 0.2575 2.3320
M42 1.4045 −6.9805 × 10−110 0.3460 0.2575 2.3320

xn M43 1.4045 NC 0.3460 0.2575 2.3320
M44 1.4045 3.2977 × 10−123 0.3460 0.2575 2.3320
M45 1.4045 −3.5010 × 10−226 0.3460 0.2575 2.3320

M41 1.9828 × 10−100 7.8835 × 10−218 1.9230 × 10−116 2.5756 × 10−262 1.1861 × 10−326

M42 4.0436 × 10−108 6.9805 × 10−110 1.1758 × 10−96 6.8107 × 10−287 1.9034 × 10−404

| f (xn)| M43 3.6237 × 10−93 NC 6.4877 × 10−49 7.5782 × 10−62 2.9990 × 10−196

M44 1.7439 × 10−127 3.2977 × 10−123 4.4608 × 10−80 1.3131 × 10−285 2.5652 × 10−390

M45 5.7027 × 10−110 3.5010 × 10−226 9.4841 × 10−120 6.9959 × 10−260 1.1952 × 10−324

M41 3.9919 4.0000 4.0184 4.0000 4.0000
M42 3.9935 3.9953 4.0646 4.0000 4.0000

ACOC M43 4.1336 NC 3.5972 4.6265 4.0214
M44 3.9978 4.0069 3.9838 4.0000 4.0000
M45 3.9946 4.0001 3.9878 4.0000 4.0000
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3.2. Comparison of Sixth Order Methods

We denote our sixth order method (15) by M61. We shall compare this method with

• M62 : Method of Neta [25] with a = 1, given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)+a f (yn)
f (xn)+(a−2) f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − f (xn)− f (yn)
f (xn)−3 f (yn)

f (zn)
f ′(xn)

,

• M63 : Method of Grau et al. [26] given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

,

xn+1 = zn − f (zn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

.

• M64 : Method of Sharma and Guha [27] with a = 2, given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

,

xn+1 = zn − f (zn)
f ′(xn)

f (xn)+a f (yn)
f (xn)+(a−2) f (yn)

,

• M65 : Method of Chun and Neta [28] given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)

)2 ,

xn+1 = zn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)
− f (zn)

f (xn)

)2 .

The comparison of the methods M6i, i = 1, 2, 3, 4, 5 is tabulated in Table 2. From the table, we
observe that the proposed method M61 is compatible with the other existing methods. We can see that
method M63 gives different results for the test functions f2 and f5 with given initial guesses.

Table 2. Comparison of numerical results of sixth order methods at the 4th iteration.

f1 f2 f3 f4 f5

M61 1.8933 × 10−73 1.8896 × 10−148 5.1627 × 10−90 1.3377 × 10−199 9.5891 × 10−261

M62 1.6801 × 10−106 2.9382 × 10−152 2.4137 × 10−64 1.7893 × 10−191 3.75383 × 10−255

∆xn M63 2.9803 × 10−95 2.9803 × 10−95 2.9815 × 10−82 2.9815 × 10−82 2.9803 × 10−95

M64 5.0012 × 10−85 2.4246 × 10−153 4.9788 × 10−69 4.6397 × 10−198 4.0268 × 10−259

M65 9.9516 × 10−88 2.1737 × 10−154 3.3993 × 10−86 2.7764 × 10−193 3.4903 × 10−256

M61 1.4045 −1.1331 × 10−884 0.3460 0.2575 2.3320
M62 1.4045 4.5753 × 10−908 0.3460 0.2575 2.3320

xn M63 1.4045 1.4045 0.3460 0.2575 1.4045
M64 1.4045 1.0114 × 10−914 0.3460 0.2575 2.3320
M65 1.4045 −3.7511 × 10−921 0.3460 0.2575 2.3320
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Table 2. Cont.

f1 f2 f3 f4 f5

M61 5.6523 × 10−436 1.1331 × 10−884 1.8046 × 10−535 0.0 0.0
M62 6.7308 × 10−636 4.5753 × 10−908 1.0347 × 10−381 0.0 0.0

| f (xn)| M63 8.1802 × 10−568 8.1802 × 10−568 8.2004 × 10−490 8.2004 × 10−490 8.1802 × 10−568

M64 5.7605 × 10−506 1.0114 × 10−914 1.8726 × 10−409 0.0 0.0
M65 3.7794 × 10−522 3.7511 × 10−921 4.8072 × 10−514 0.0 0.0

M61 5.9980 6.0000 5.9980 6.0000 6.0000
M62 5.9992 6.0000 5.9854 6.0000 6.000

ACOC M63 5.9997 5.9997 5.9992 5.9992 5.9997
M64 5.9991 6.0000 5.9984 6.0000 6.0000
M65 5.9993 6.0000 6.0088 6.0000 6.0000

3.3. Comparison of Eighth Order Methods

Consider the eighth order method (18), which involves the parameter pair (β, λ). We denote

• M81 the case where (β, λ) = (0, 0), whose iterative expression results in

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
1+2tn+2un+3t2

n
1−sn

)
,

• M82 for (β, λ) = (1, 1), resulting in the iterative scheme given by M81 :

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
1+2tn+3un+3t2

n
1+un

(1 + sn)
)

,

• M83 for (β, λ) = (0, 1), whose iterative method is

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
(1 + 2tn + 2un + 3t2

n)(1 + sn)
)

.

Along with these, we take the following methods for the comparison of numerical results:

• Matthies et al. in [22] presented an optimal class of 8th order method from the Kung–Traub
method [8]. For some particular values of the parameters, one of the methods denoted by M84 is
given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn −
(

f (xn) f (yn)
( f (xn)− f (yn))2

)
f (xn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(xn)

(
2+tn+5un+4t2

n+4t3
n

2−3tn+un+2t2
n
· 2+sn

2−sn

)
.
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• Babajee et al. in [11] presented a family of eighth order methods. For some fixed values of
parameters, the method denoted by M85 is given by

yn = xn − f (xn)
f ′(xn)

(
1 + ( f (xn)

f ′(xn)
)5
)

,

zn = yn − f (yn)
f ′(xn)

(
1− f (yn)

f (xn)

)−2
,

xn+1 = zn − f (zn)
f ′(xn)

(
(1+t2

n+5t4
n+sn

(1−tn−un)
2

)
.

• Chun and Lee in [29] presented a family of optimal eighth order methods. For some particular
values of parameters, the method denoted by M86 is given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)

)2 ,

xn+1 = zn − f (zn)
f ′(xn)

1(
1−tn− t2n

2 +
t3n
2 −

un
2 −

sn
2

)2 .

In all the above methods, tn, un and sn are as given in (17). The performance of the methods M8i,
i = 1, 2, 3, 4, 5, 6 are recorded in Table 3.

Table 3. Comparison of numerical results of eighth order methods at the 4th iteration.

f1 f2 f3 f4 f5

∆xn

M81 5.8768 × 10−187 1.5404 × 10−393 2.5345 × 10−165 6.1099 × 10−495 4.4344 × 10−658

M82 2.0563 × 10−165 9.0158 × 10−321 1.1101 × 10−167 5.4494 × 10−421 4.0437 × 10−598

M83 4.5429 × 10−170 1.5139 × 10−324 2.9710 × 10−168 2.8838 × 10−421 2.9107 × 10−604

M84 2.4469 × 10−187 4.9438 × 10−351 4.3825 × 10−171 1.8592 × 10−438 4.3404 × 10−614

M85 2.6744 × 10−204 NC 1.7766 × 10−177 6.5231 × 10−192 9.8976 × 10−553

M86 4.1482 × 10−235 1.3271 × 10−380 5.6991 × 10−175 2.5934 × 10−455 7.1011 × 10−617

xn

M81 1.4045 0.0 0.3460 0.2575 2.3320
M82 1.4045 0.0 0.3460 0.2575 2.3320
M83 1.4045 0.0 0.3460 0.2575 2.3320
M84 1.4045 0.0 0.3460 0.2575 2.3320
M85 1.4045 NC 0.3460 0.2575 2.3320
M86 1.4045 0.0 0.3460 0.2575 2.3320

| f (xn)|

M81 0.0 0.0 0.0 0.0 0.0
M82 0.0 0.0 0.0 0.0 0.0
M83 0.0 0.0 0.0 0.0 0.0
M84 0.0 0.0 0.0 0.0 0.0
M85 0.0 0.0 0.0 0.0 0.0
M86 0.0 0.0 0.0 0.0 0.0

ACOC

M81 7.9999 8.0000 7.9993 8.0000 8.0000
M82 7.9996 8.0000 8.0000 8.0000 8.0000
M83 7.9997 8.0000 7.9996 8.0000 8.0000
M84 7.9998 8.0000 8.0047 8.0000 8.0000
M85 7.9995 NC 8.0020 8.0004 8.0000
M86 8.0000 8.0000 8.0023 8.0000 8.0000

From Tables 1–3, we observe that the proposed methods are compatible with other existing
methods (and sometimes perform better than other methods) of the corresponding order. Not any
particular method is superior to others for all examples. Among the family of eighth order methods (18),
from Table 3, we observe that the method M81 performs better than other two. For more understanding
about the iterative methods, we study the dynamics of these methods in the next section.
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4. Applications

The applications discussed in Sections 4.1–4.3 are based on standard engineering examples, and
we refer to [30]. We use the proposed methods M41, M61, and M8i, i = 1, 2, 3 to obtain the various
results from the first three iterations of these examples. In particular, we compute the value of the
unknowns xn−1 and xn, absolute value of the function f (xn) and absolute value of the difference d of
unknown in two consecutive iterations, i.e., d = |xn − xn−1|, n = 1, 2, 3.

4.1. Pipe Friction Problem

Determining fluid flow through pipes and tubes has great relevance in many areas of engineering
and science. In engineering, typical applications include the flow of liquids and gases through
pipelines and cooling systems. Scientists are interested in topics ranging from flow in blood vessels
to nutrient transmission through a plant’s vascular system. The resistance to flow in such conduits
is parameterized by a dimensionless number called the friction factor f . For a flow with turbulence,
the Colebrook equation [31] provides a means to calculate the friction factor:

0 =
1√

f
+ 2.0 log

(
ε

3.7D
+

2.51
Re
√

f

)
, (24)

where ε is the roughness (m), D is the diameter (m) and Re is the Reynolds number

Re =
ρvD

µ
.

Here, ρ denotes the fluid density (kg/m3), v the velocity of the fluid (m/s) and µ the dynamical
viscosity (N·s/m2). A flow is said to be turbulent if Re > 4000.

To determine f for air flow through a smooth and thin tube, the parameters are taken to be
ρ = 1.23 kg/m3, µ = 1.79× 10−5 N·s/m2, D = 0.005 m, V = 40 m/s and ε = 0.0000015 m. Since the
friction factors range from about 0.008 to 0.08, we choose initial guess f0 = 0.023. To determine the
approximate value of f , we use the function

g( f ) =
1√

f
+ 2.0 log

(
ε

3.7D
+

2.51
Re
√

f

)
. (25)

The results obtained by the various methods are presented in Table 4.

Table 4. Results of pipe friction problem.

# Iter Value M41 M61 M81 M82 M83

f 0.0169 0.0170 0.0170 0.0170 0.0170
1 g( f ) 0.0240 0.0104 0.0009 0.0005 0.0008

d 0.0061 0.0060 0.0060 0.0060 0.0060

f 0.0170 0.0170 0.0170 0.0170 0.0170
2 g( f ) 3.0954 × 10−9 2.6645 × 10−15 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16

d 0.0001 4.1700 × 10−5 3.7223 × 10−6 2.0962 × 10−6 3.3172 × 10−6

f 0.0170 0.0170 0.0170 0.0170 0.0170
3 g( f ) 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16

d 1.2442 × 10−11 1.0408 × 10−17 6.9389 × 10−18 0.0 0.0

4.2. Open-Channel Flow

An open problem in civil engineering is to relate the flow of water with other factors affecting the
flow in open channels such as rivers or canals. The flow rate is determined as the volume of water
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passing a particular point in a channel per unit time. A further concern is related to what happens
when the channel is slopping.

Under uniform flow conditions, the flow of water in an open channel is given by
Manning’s equation

Q =

√
S

n
AR2/3, (26)

where S is the slope of the channel, A is the cross-sectional area of the channel, R is the hydraulic
radius of the channel and n is the Manning’s roughness coefficient. For a rectangular channel having
the width B and the defth of water in the channel y, it is known that

A = By

and
R =

By
B + 2y

.

With these values, (26) becomes

Q =

√
S

n
By
(

By
B + 2y

)2/3
. (27)

Now, if it is required to determine the depth of water in the channel for a given quantity of water, (27)
can be rearranged as

f (y) =
√

S
n

By
(

By
B + 2y

)2/3
−Q. (28)

In our work, we estimate y when the remaining parameters are assumed to be given as Q = 14.15 m3/s,
B = 4.572 m, n = 0.017 and S = 0.0015. We choose as an initial guess y0 = 4.5 m. The results obtained
by the various methods are presented in Table 5.

Table 5. Results of an open channel problem.

# Iter Value M41 M61 M81 M82 M83

y 1.4804 1.4666 1.4652 1.4653 1.4653
1 f (y) 0.2088 0.0204 0.0016 0.0029 0.0028

d 3.0200 3.0334 3.0348 3.0347 3.0347

y 1.4651 1.4651 1.4651 1.4651 1.4651
2 f (y) 4.5027 × 10−9 1.7764 × 10−15 × 10−15 3.5527 × 10−15 3.5527 × 10−15

d 0.0154 0.0015 0.0001 0.0002 0.0002

y 1.4651 1.4651 1.4651 1.4651 1.4651
3 f (y) 3.5527 × 10−15 7.1054 × 10−14 6.5725 × 10−14 5.3291 × 10−15 1.7764 × 10−15

d 3.3152 × 10−10 5.1070 × 10−15 5.1070 × 10−15 6.6613 × 10−16 2.2204 × 10−16

4.3. Ideal and Non-Ideal Gas Laws

The ideal gas law is
PV = nRT,

where P is the absolute pressure, V is the volume, n is the number of moles, R is the universal gas
constant and T is the absolute temperature. Due to its limited use in engineering, an alternative
equation of state for gases is the given van der Waals equation [32–35](

P +
a

v2

)
(v− b) = RT,
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where v = V
n is the molal volume and a, b are empirical constants that depend on the particular gas.

The computation of the molal volume is done by solving

f (v) =
(

P +
a

v2

)
(v− b)− RT. (29)

We take the remaining parameters as R = 0.082054 L atm/(mol K), for carbon dioxide a = 3.592,
b = 0.04267, T = 300 K, p = 1 atm, and the initial guess for the molal volume is taken as v0 = 3.
The results obtained by the various methods are presented in Table 6. In this table, IND stands for
indeterminate form.

Table 6. Numerical results of ideal and non-ideal gas law.

# Iter Value M41 M61 M81 M82 M83

v 26.4881 27.0049 23.9583 24.1631 24.0274
1 f (v) 1.9647 2.4788 0.5509 0.3474 0.4823

d 23.4881 24.0049 20.9583 21.1631 21.0274

v 24.5126 24.5126 24.5126 24.5126 24.5126
2 f (v) 2.7340 × 10−8 3.3573 × 10−12 0.0 0.0 0.0

d 1.9756 2.4923 0.5543 0.3495 0.4852

v 24.5126 24.5126 IND IND IND
3 f (v) 0.0 0.0 IND IND IND

d 2.7503 × 10−8 3.3786 × 10−12 IND IND IND

5. Dynamical Analysis

The stability analysis of the methods M41, M61 and M8i, i = 1, 2, 3, is performed in this section.
The dynamics of the proposed methods on a generic quadratic polynomial will be studied, analyzing
the associated rational operator for each method. This analysis shows their performance depending
on the initial estimations. In addition, method M41 is analyzed for cubic polynomials. First, we recall
some basics on complex dynamics.

5.1. Basics on Complex Dynamics

Let R : Ĉ −→ Ĉ be a rational function defined on the Riemann sphere. Let us recall that every
holomorphic function from the Riemann sphere to itself is in fact a rational function R(z) = P(z)

Q(z) ,
where P and Q are complex polynomials (see [36]). For older work on dynamics on the Riemann
sphere, see, e.g., [37].

The orbit of a point z0 ∈ Ĉ is composed by the set of its images by R, i.e.,

{z0, R(z0), R2(z0), . . . , Rn(z0), . . .}.

A point zF ∈ Ĉ is a fixed point if R(zF) = zF. Note that the roots z∗ of an equation f (z) = 0 are fixed
points of the associated operator of the iterative method. Fixed points that do not agree with a root of
f (x) = 0 are strange fixed points.

The asymptotical behavior of a fixed point zF is determined by the value of its multiplier
µ = |R′(zF)|. Then, zF is attracting, repelling or neutral if µ is lower, greater or equal to 1, respectively.
In addition, it is superattracting when µ = 0.

For an attracting fixed point zF, its basin of attraction is defined as the set of its pre-images of
any order:

A(zF) = {z0 ∈ Ĉ : Rn(z0) −→ zF, n→ ∞}.

The dynamical plane represents the basins of attraction of a method. By iterating a set of initial
guesses, their convergence is analyzed and represented. The points zC ∈ Ĉ that satisfy R′(zC) = 0 are
called critical points of R. When a critical point does not agree with a solution of f (x) = 0, it is a free
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critical point. A classical result [21] establishes that there is at least one critical point associated with
each immediate invariant Fatou component.

5.2. Rational Operators

Let p(z) be a polynomial defined on Ĉ. Corresponding to the methods developed in this paper,
i.e., methods (10), (15) and family (18), we define the operators R4(z), R6(z) and R8(z), respectively,
in Ĉ as follows:

R4(z) = z−
(

1 + 2
(

p(y(z))
p(z)

)2
)

p(z) + p(y(z))
p′(z)

, (30)

R6(z) = R4(z)−
(

1 + 2
p(y(z))

p(z)

)
p(R4(z))

p′(z)
,

R8(z) = R4(z)−
p(R4(z))

p′(z)
J(z)G(z),

where y(z) = z− p(z)
p′(z) and

J(z) =
1+2 p(y(z))

p(z) +(β+2) p(R4(z))
p(z) +3

(
p(y(z))

p(z)

)2

1+β
p(R4(z))

p(z)

,

G(z) =
1+λ

p(R4(z))
p(y(z))

1+(λ−1) p(R4(z))
p(y(z))

.

First, we recall the following result for the generalization of the dynamics of M41.

Theorem 4 (Scaling Theorem for method M41). Let f (z) be an analytic function in the Riemann sphere and
let A(z) = ηz + σ, with η 6= 0, be an affine map. Let h(z) = µ( f ◦ A)(z) with µ 6= 0. Then, the fixed point
operator R f

4 is affine conjugated to Rh
4 by A, i.e.,

(A ◦ Rh
4 ◦ A−1)(z) = R f

4(z).

Proof. From (30), let the fixed point operators associated with f and h be, respectively,

R f
4(z) = z−

(
1 + 2

(
f (y(z))

f (z)

)2
)

f (z)+ f (y(z))
f ′(z) ,

Rh
4(z) = z−

(
1 + 2

(
h(y(z))

h(z)

)2
)

h(z)+h(y(z))
h′(z) .

Thus, we have

(R f
4 ◦ A)(z) = A(z)−

(
1 + 2

f 2(A(y))
f 2(A(z))

)
f (A(z)) + f (A(y))

f ′(A(z))
. (31)

Being h′(z) = ηµ f ′(A(z)), we obtain

Rh
4(z) = z−

(
1 + 2 µ2 f 2(A(y))

µ2 f 2(A(z))

)
µ f (A(z))+µ f (A(y))

ηµ f ′(A(z))

= z−
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z)) .
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The affine map A satisfies A(z1 − z2) = A(z1)− A(z2) + σ, ∀z1, z2. Then, from (32), we have

(A ◦ Rh
4)(z) = A(z)− A

((
1 + 2 f 2(A(y))

f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z))

)
+ σ

= A(z)−
(

η
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z)) + σ
)
+ σ

= A(z)−
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

f ′(A(z)) .

Thus, it proves that (R f
4 ◦ A)(z) = (A ◦ Rh

4)(z) and then method M41 satisfies the Scaling Theorem.

Theorem 4 allows for generalizing the dynamical study of a specific polynomial to a generic
family of polynomials by using an affine map. Analogous to the way we proved the Scaling Theorem
for the operator R4, it also follows that the fixed point operators R6 and R8 obey the Scaling Theorem.

5.3. Dynamics on Quadratic Polynomials

The application of the rational functions on a generic quadratic polynomial p(z) = (z− a)(z− b),
a, b ∈ Ĉ is studied below. Let R4,a,b be the rational operator associated with method M41 on p(z).
When the Möbius transformation h(u) = a−u

b−u is applied to R4,a,b, we obtain

S4(z) = (h ◦ R4,a,b ◦ h−1)(z) =
z4 (z4 + 6z3 + 14z2 + 14z + 3

)
3z4 + 14z3 + 14z2 + 6z + 1

. (32)

The rational operator associated with M41 on p(z) does not depend on a and b. Then, the dynamical
analysis of the method on all quadratic polynomials can be studied through the analysis of (32).
In addition, the Möbius transformation h maps its roots a and b to z∗1 = 0 and z∗2 = ∞, respectively.

The fixed point operator S4(z) has nine fixed points: zF
1 = 0 and zF

2 = ∞, which are superattracting,

and zF
3 = 1, zF

4,5 = 1
2 (−3±

√
5), zF

6−7 = −2+
√

2
2 ± i

√
3
2 −
√

2, zF
8−9 = −2−

√
2

2 ± i
√

3
2 +
√

2, all of them

being repelling. Computing S′4(z) = 0, 5 critical points can be found. zC
1,2 = z∗1,2 and the free critical

points zC
3 = −1 and zC

4,5 = 1
6 (−13±

√
133).

Following the same procedure, when Möbius transformation is applied to methods M6 and M8i,
i = 1, 2, 3, on polynomial p(z), the respective fixed point operators turn into

S6(z) =
z6(z12+16z11+119z10+544z9+1700z8+3808z7+6206z6+7288z5+5973z4+3248z3+1111z2+216z+18)

18z12+216z11+1111z10+3248z9+5973z8+7288z7+6206z6+3808z5+1700z4+544z3+119z2+16z+1 ,

S81(z) =
P30(z)
P22(z)

, S82(z) =
P42(z)
P34(z)

, S83(z) =
Q42(z)
Q34(z)

,

where Pk and Qk denote polynomials of degree k.
The fixed point operator S6 has 19 fixed points: the two superattracting fixed points zF

1,2 = z∗1,2,
the repelling fixed point zF

3 = 1 and the repelling fixed points zF
4 , . . . , zF

19, which are the roots of a
sixteenth-degree polynomial.

Regarding the critical points of S6, the roots of p(z) are critical points, and S6 has the free critical
points zC

3 = −1 and the roots of a tenth-degree polynomial, zC
4 , . . . , zC

11.
The dynamical planes are a useful tool in order to analyze the stability of an iterative method.

Taking each point of the plane as initial estimation to start the iterative process, they represent the
convergence of the method depending on the initial guess. In this sense, the dynamical planes show
the basins of attraction of the attracting points.

Figure 1 represents the dynamical planes of the methods S4 and S6. The generation of the
dynamical planes follows the guidelines established in [38]. A mesh of 500× 500 complex values has
been set as initial guesses in the intervals −5 < <{z} < 5, −5 < ={z} < 5. The roots z∗1 = 0 and
z∗2 = ∞ are mapped with orange and blue colors, respectively. The regions where the colors are darker
represent that more iterations are necessary to converge than with the lighter colors, with a maximum
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of 40 iterations of the methods and a stopping criteria of a difference between two consecutive iterations
lower than 10−6.

As Figure 1 illustrates, there is convergence to the roots for every initial guess. Let us remark that,
when the order of the method increases, the basin of attraction of z∗1 = 0 becomes more intricate.

Finally, for the fixed point operators associated with family M8, the solutions of S8i(z) = z
for i = 1, 2, 3 give the superattracting fixed points zF

1,2 = z∗1,2 and the repelling point zF
3 = 1. In

addition, S81 has 28 repelling points. S82 and S83 have 38 repelling points, corresponding to the roots
of polynomials of 28 and 38 degree, respectively, and the strange fixed points zF

4,5 = 1
2 (−1±

√
5).
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(b) S6

Figure 1. Dynamical planes of methods S4 and S6.

The number of critical points of the fixed point operators S8i are collected in Table 7. In addition,
the number of strange fixed points and free critical points are also included in the table for all of
the methods.

Table 7. Number of strange fixed points (SFP) and free critical points (FCP) for the methods on
quadratic polynomials.

S4 S6 S81 S82 S83

Strange fixed points 7 17 29 41 41
Free critical points 3 29 29 43 29

Figure 2 represents the dynamical planes of the methods S81, S82 and S83. Since the original
methods satisfy the Scaling Theorem, the generation of one dynamical plane involves the study of
every quadratic polynomial.
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Figure 2. Dynamical planes of methods S8i, i = 1, 2, 3.
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There is an intricate region around z = −1 in Figure 2a, becoming wider in Figure 2b,c around
z = −1.5. However, for every initial guess in the three dynamical planes of Figure 2, there is
convergence to the roots.

5.4. Dynamics on Cubic Polynomials

The stability of method M41 on cubic polynomials is analyzed below. As stated by the authors
in [39], the Scaling Theorem reduces the dynamical analysis on cubic polynomials to the study of
dynamics on the cubic polynomials p0(z) = z3, p+(z) = z3 + z, p−(z) = z3 − z and the family of
polynomials pγ(z) = z3 + γz + 1. Let us recall that the first one only has the root z∗1 = 0, while p+(z)
and p−(z) have three simple roots: z∗1 = 0 and z∗2,3 = ∓i or z∗2,3 = ∓1, respectively. For each γ ∈ C,
the polynomial pγ(z) also has three simple roots that depend on the value of γ. They will be denoted
by z∗1,2,3(γ).

By applying method M41 to polynomials p0(z), p+(z) and p−(z), the fixed point operators
obtained are, respectively,

S4,0(z) = 46z
81 , S4,+(z) = 6z5+36z7+46z9

(1+3z2)4 , S4,−(z) = 6z5−36z7+46z9

(1−3z2)4 .

The only fixed point of S4,0(z) agrees with the root of the polynomial, so it is superattracting, and the
operator does not have critical points.

The rest of the fixed point operators have six repelling fixed points, in addition to the roots of the

corresponding polynomials: zF
4,5 = ± i

√
5

5 and zF
6−9 = ±i

√
1
7 (3±

√
2) for S4,+(z), and zF

4,5 = ±
√

5
5 and

zF
6−9 = ±

√
1
7 (3±

√
2) for S4,−(z).

Regarding the critical points of S4,+(z) and S4,−(z), they match with the roots of the polynomials.

Moreover, there is the presence of free critical points with values zC
4,5 = ±i

√
5

23 for S4,+(z) and

zC
4,5 = ±

√
5

23 for S4,−(z).
As for quadratic polynomials, the dynamical planes of method M41 when it is applied to the

cubic polynomials have been represented in Figure 3. Depending on the roots of each polynomial, the
convergence to z∗1 = 0 is represented in orange, while the convergence to z∗2 and z∗3 is represented in
blue and green, respectively. It can be see in Figure 3 that there is full convergence to a root in the three
cases. However, there are regions with darker colors that indicate a higher number of iterations until
the convergence is achieved.
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Figure 3. Dynamical planes of method M41 on polynomials p0(z), p+(z) and p−(z).

When method M41 is applied on pγ(z), the fixed point function turns into

S4,γ(z) = −
γ3 − 46z9 − 36γz7 + 42z6 − 6γ2z5 + 45γz4 + 6z3 + 12γ2z2 − 1

(γ + 3z2)
4 .
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The fixed points of S4,γ(z) are the roots of the polynomial z∗1,2,3(γ), being superattracting, and the
strange fixed points zF

4−9(γ) that are the roots of the sixth-degree polynomial q(z, γ) = 35z6 + 37γz4 +

7z3 + 11γ2z2 + γz + γ3 − 1.
As the asymptotical behavior of zF

4 (γ), . . . , zF
9 (γ) depends on the value of γ, the stability planes

corresponding to these points are represented in Figure 4. For each strange fixed point, a mesh
of 100 × 100 points covers the values of <(γ) ∈ [−5, 5] and =(γ) ∈ [−5, 5]. The stability plane
shows the values for the parameter where |S′4,γ(z

F)| is lower or greater than 1, represented in red or
green, respectively.

-5 0 5
{ }

-5

0

5

{
}

Figure 4. Stability planes of zF
4−9(γ).

From Figure 4, the strange fixed points are always repelling for (<(γ),=(γ)) ∈ [−5, 5]× [−5, 5].
Then, the only attracting fixed points are the roots of the polynomial. This fact guarantees a better
stability of the method.

The solutions of S′4,γ(z) = 0 are the critical points zC
1,2,3(γ) = z∗1,2,3(γ) and the free critical points

zC
4 = 0 and

zC
5 (γ) =

(√
69
√

125γ3+2484+414
)2/3
−5 3√69γ

692/3 3
√√

69
√

125γ3+2484+414
,

zC
6,7(γ) =

(−1±i
√

3)
(√

69
√

125γ3+2484+414
)2/3

+5 3√69(1±i
√

3)γ

2 692/3 3
√√

69
√

125γ3+2484+414
.

When the fixed point function has dependence on a parameter, another useful representation is the
parameters’ plane. This plot is generated in a similar way to the dynamical planes, but, in this case,
by iterating the method taking as an initial guess a free critical point and varying the value of γ in a
complex mesh of values, so each point in the plane represents a method of the family. The parameters’
plane helps to select the values for the parameter that give rise to the methods of the family with
more stability.

The parameters’ planes of the four free critical points are shown in Figure 5. Parameter γ takes the
values of 500× 500 points in a complex mesh in the square [−5, 5]× [−5, 5]. Each point is represented
in orange, green or blue when the corresponding method converges to an attracting fixed point. The
iterative process ends when the maximum number of 40 iterations is reached, in which case the point
is represented in black, or when the method converges as soon as, by the stopping criteria, a difference
between two consecutive iterations lower than 10−6 is reached.

For the parameters’ planes in Figure 5, there is not any black region. This guarantees that the
corresponding iterative schemes converge to a root of pγ(z) for all the values of γ.

In order to visualize the basins of attraction of the fixed points, several values of γ have been
chosen to perform the dynamical planes of method M41. These values have been selected from the
different regions of convergence observed in the parameters planes. Figure 6, following the same code
of colours and stopping criteria as in the other representations, shows the dynamical planes obtained
when these values of γ are fixed.



Mathematics 2019, 7, 942 19 of 21

-5 0 5

{ }

-5

-4

-3

-2

-1

0

1

2

3

4

5

{
}

(a) zC
4

-5 0 5

{ }

-5

-4

-3

-2

-1

0

1

2

3

4

5

{
}

(b) zC
5 (γ)

-5 0 5

{ }

-5

-4

-3

-2

-1

0

1

2

3

4

5

{
}

(c) zC
6 (γ)

-5 0 5

{ }

-5

-4

-3

-2

-1

0

1

2

3

4

5

{
}

(d) zC
7 (γ)

Figure 5. Parameter planes of the critical points of method M41 on pγ(z).

As Figure 6 shows, there is not any initial guess that tends to a point different than the roots. This
fact guarantees the stability of these methods on the specific case of any cubic polynomial.

-5 0 5

{z}

-5

-4

-3

-2

-1

0

1

2

3

4

5

{z
}

(a) γ = −2 + 4i

-5 0 5

{z}

-5

-4

-3

-2

-1

0

1

2

3

4

5

{z
}

(b) γ = −1 + i

-5 0 5

{z}

-5

-4

-3

-2

-1

0

1

2

3

4

5

{z
}

(c) γ = 0.5− 0.5i

Figure 6. Dynamical planes for method M41 on pγ(z) for different values of γ.

6. Conclusions

Two iterative schemes of orders of convergence four and six, and a family of methods of order
eight have been introduced. The method of order four and the family of order eight are optimal
in the sense of Kung–Traub’s conjecture. The development of the order of convergence of every
method has been performed. For every method, we have made a numerical experiment, over both test
functions and real engineering problems. In order to analyze the stability of the introduced methods,
the dynamical behavior of them has been studied. The results confirm that the methods have wide
basins of attraction, guaranteeing the stability over some nonlinear problems.
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31. Brkić, D. A note on explicit approximations to Colebrook’s friction factor in rough pipes under highly

turbulent cases. Int. J. Heat Mass tramsf. 2016, 93, 513–515. [CrossRef]
32. Wang, J.; Pang, Y.; Zhang, Y. Limits of solutions to the isentropic Euler equations for van der Waals gas.

Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 461–473. [CrossRef]
33. Gates, D.J.; Penrose, O. The van der Waals limit for classical systems. I. A variational principle. Comm. Math.

Phys. 1969, 15, 255–276. [CrossRef]

http://dx.doi.org/10.1016/j.cam.2018.01.019
http://dx.doi.org/10.1155/2015/259167
http://dx.doi.org/10.1016/j.camwa.2011.11.040
http://dx.doi.org/10.1145/321850.321860
http://dx.doi.org/10.1007/s11075-013-9699-6
http://dx.doi.org/10.1155/2017/2713145
http://dx.doi.org/10.1007/s10910-014-0464-4
http://dx.doi.org/10.1016/j.amc.2011.07.076
http://dx.doi.org/10.1007/BF03025310
http://dx.doi.org/10.1007/BF01401018
http://dx.doi.org/10.1016/j.amc.2007.01.062
http://dx.doi.org/10.1007/BF01933248
http://dx.doi.org/10.1080/00207167908803166
http://dx.doi.org/10.1016/j.amc.2005.04.043
http://dx.doi.org/10.1016/j.aml.2011.08.012
http://dx.doi.org/10.1016/j.amc.2013.08.033
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.109
http://dx.doi.org/10.1515/ijnsns-2018-0263
http://dx.doi.org/10.1007/BF01645528


Mathematics 2019, 7, 942 21 of 21

34. Gates, D.J.; Penrose, O. The van der Waals limit for classical systems. II. Existence and continuity of the
canonical pressure. Comm. Math. Phys. 1970, 16, 231–237. [CrossRef]

35. Gates, D.J.; Penrose, O. The van der Waals limit for classical systems. III. Deviation from the van der
Waals-Maxwell theory. Comm. Math. Phys. 1970, 17, 194–209. [CrossRef]

36. Blanchard, P. Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 1984, 11, 85–141.
[CrossRef]

37. Schlag, W. A Course in Complex Analysis and Riemann Surfaces; American Mathematical Society: Providence,
RI, USA, 2014.

38. Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Drawing dynamical and parameters planes of iterative families
and methods. Sci. World J. 2013, 2013, 780153. [CrossRef] [PubMed]

39. Amat, S.; Busquier, S.; Plaza, S. Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl.
2010, 366, 24–32. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01646789
http://dx.doi.org/10.1007/BF01647090
http://dx.doi.org/10.1090/S0273-0979-1984-15240-6
http://dx.doi.org/10.1155/2013/780153
http://www.ncbi.nlm.nih.gov/pubmed/24376386
http://dx.doi.org/10.1016/j.jmaa.2010.01.047
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Development of Methods and Their Convergence Analysis
	Optimal Fourth Order Method
	Sixth Order Method
	Optimal Eighth Order Method

	Numerical Examples
	Comparison of the Fourth Order Method
	Comparison of Sixth Order Methods
	Comparison of Eighth Order Methods

	Applications
	Pipe Friction Problem
	Open-Channel Flow
	Ideal and Non-Ideal Gas Laws

	Dynamical Analysis
	Basics on Complex Dynamics
	Rational Operators
	Dynamics on Quadratic Polynomials
	Dynamics on Cubic Polynomials

	Conclusions
	References

