1,790 research outputs found

    Towards a Runtime Comparison of Natural and Artificial Evolution

    Get PDF
    Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse the runtimes of EAs on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrences of new mutations is much longer than the time it takes for a mutated genotype to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a stochastic process evolving one genotype by means of mutation and selection between the resident and the mutated genotype. The probability of accepting the mutated genotype then depends on the change in fitness. We study this process, SSWM, from an algorithmic perspective, quantifying its expected optimisation time for various parameters and investigating differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient

    Physical Foundations of Landauer's Principle

    Full text link
    We review the physical foundations of Landauer's Principle, which relates the loss of information from a computational process to an increase in thermodynamic entropy. Despite the long history of the Principle, its fundamental rationale and proper interpretation remain frequently misunderstood. Contrary to some misinterpretations of the Principle, the mere transfer of entropy between computational and non-computational subsystems can occur in a thermodynamically reversible way without increasing total entropy. However, Landauer's Principle is not about general entropy transfers; rather, it more specifically concerns the ejection of (all or part of) some correlated information from a controlled, digital form (e.g., a computed bit) to an uncontrolled, non-computational form, i.e., as part of a thermal environment. Any uncontrolled thermal system will, by definition, continually re-randomize the physical information in its thermal state, from our perspective as observers who cannot predict the exact dynamical evolution of the microstates of such environments. Thus, any correlations involving information that is ejected into and subsequently thermalized by the environment will be lost from our perspective, resulting directly in an irreversible increase in total entropy. Avoiding the ejection and thermalization of correlated computational information motivates the reversible computing paradigm, although the requirements for computations to be thermodynamically reversible are less restrictive than frequently described, particularly in the case of stochastic computational operations. There are interesting possibilities for the design of computational processes that utilize stochastic, many-to-one computational operations while nevertheless avoiding net entropy increase that remain to be fully explored.Comment: 42 pages, 15 figures, extended postprint of a paper published in the 10th Conf. on Reversible Computation (RC18), Leicester, UK, Sep. 201

    Black Stork Down: Military Discourses in Bird Conservation in Malta

    Get PDF
    Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock

    Effect of antiandrogen flutamide on measures of hepatic regeneration in rats

    Get PDF
    Male rat liver undergoes a process of demasculinization during hepatic regeneration following partial hepatectomy. The possibility that antiandrogens might potentiate this demasculinization process and in so doing augment the hepatic regenerative response was investigated. Adult male Wistar rats were treated with the antiandrogen flutamide (2 mg/rat/day or 5 mg/rat/day subcutaneously) or vehicle for three days prior to and daily after a 70% partial hepatectomy. At various times after hepatectomy, the liver remnants were removed and weighed. Rates of DNA and polyamine synthesis were assessed by measuring thymidine kinase and ornithine decarboxylase activities, respectively. Hepatic estrogen receptor status and the activity of alcohol dehydrogenase, an androgen-sensitive protein, were measured. Prior to surgery, the administration of 5 mg/day flutamide reduced the hepatic cytosolic androgen receptor activity by 98% and hepatic cytosolic estrogen receptor content by 92% compared to that present in vehicle-treated controls. After hepatectomy, however, all differences in sex hormone receptor activity between the treatment groups were abolished. The rate of liver growth after partial hepatectomy in the three groups was identical. Moreover, hepatectomy-induced increases in ornithine decarboxylase activity and thymidine kinase activity were comparable. These data demonstrate that, although flutamide administration initially alters the sex hormone receptor status of the liver, these affects have no effect on the hepatic regenerative response following a partial hepatectomy. © 1989 Plenum Publishing Corporation

    Neural signatures of hyperdirect pathway activity in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is characterised by the emergence of beta frequency oscillatory synchronisation across the cortico-basal-ganglia circuit. The relationship between the anatomy of this circuit and oscillatory synchronisation within it remains unclear. We address this by combining recordings from human subthalamic nucleus (STN) and internal globus pallidus (GPi) with magnetoencephalography, tractography and computational modelling. Coherence between supplementary motor area and STN within the high (21–30 Hz) but not low (13-21 Hz) beta frequency range correlated with ‘hyperdirect pathway’ fibre densities between these structures. Furthermore, supplementary motor area activity drove STN activity selectively at high beta frequencies suggesting that high beta frequencies propagate from the cortex to the basal ganglia via the hyperdirect pathway. Computational modelling revealed that exaggerated high beta hyperdirect pathway activity can provoke the generation of widespread pathological synchrony at lower beta frequencies. These findings suggest a spectral signature and a pathophysiological role for the hyperdirect pathway in PD

    The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits <i>Porphyromonas gingivalis</i>-induced expression of interleukin-8 by oral keratinocytes

    Get PDF
    Objective: The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes.&lt;p&gt;&lt;/p&gt; Materials and methods: Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to &lt;i&gt;Porphyromonas gingivalis&lt;/i&gt; in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to &lt;i&gt;P. gingivalis&lt;/i&gt; lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-blacell reporter assay.&lt;p&gt;&lt;/p&gt; Results: Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited &lt;i&gt;P. Gingivalis&lt;/i&gt;-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to &lt;i&gt;P. Gingivalis&lt;/i&gt; lipopolysaccharide.&lt;p&gt;&lt;/p&gt; Conclusion: These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.&lt;p&gt;&lt;/p&gt

    Paleophysical Oceanography with an Emphasis on Transport Rates

    Get PDF
    Paleophysical oceanography is the study of the behavior of the fluid ocean of the past, with a specific emphasis on its climate implications, leading to a focus on the general circulation. Even if the circulation is not of primary concern, heavy reliance on deep-sea cores for past climate information means that knowledge of the oceanic state when the sediments were laid down is a necessity. Like the modern problem, paleoceanography depends heavily on observations, and central difficulties lie with the very limited data types and coverage that are, and perhaps ever will be, available. An approximate separation can be made into static descriptors of the circulation (e.g., its water-mass properties and volumes) and the more difficult problem of determining transport rates of mass and other properties. Determination of the circulation of the Last Glacial Maximum is used to outline some of the main challenges to progress. Apart from sampling issues, major difficulties lie with physical interpretation of the proxies, transferring core depths to an accurate timescale (the “age-model problem”), and understanding the accuracy of time-stepping oceanic or coupled-climate models when run unconstrained by observations. Despite the existence of many plausible explanatory scenarios, few features of the paleocirculation in any period are yet known with certainty.National Science Foundation (U.S.) (grant OCE-0645936

    Competing Activities of Heterotrimeric G Proteins in Drosophila Wing Maturation

    Get PDF
    Drosophila genome encodes six alpha-subunits of heterotrimeric G proteins. The Gαs alpha-subunit is involved in the post-eclosion wing maturation, which consists of the epithelial-mesenchymal transition and cell death, accompanied by unfolding of the pupal wing into the firm adult flight organ. Here we show that another alpha-subunit Gαo can specifically antagonize the Gαs activities by competing for the Gβ13F/Gγ1 subunits of the heterotrimeric Gs protein complex. Loss of Gβ13F, Gγ1, or Gαs, but not any other G protein subunit, results in prevention of post-eclosion cell death and failure of the wing expansion. However, cell death prevention alone is not sufficient to induce the expansion defect, suggesting that the failure of epithelial-mesenchymal transition is key to the folded wing phenotypes. Overactivation of Gαs with cholera toxin mimics expression of constitutively activated Gαs and promotes wing blistering due to precocious cell death. In contrast, co-overexpression of Gβ13F and Gγ1 does not produce wing blistering, revealing the passive role of the Gβγ in the Gαs-mediated activation of apoptosis, but hinting at the possible function of Gβγ in the epithelial-mesenchymal transition. Our results provide a comprehensive functional analysis of the heterotrimeric G protein proteome in the late stages of Drosophila wing development

    Boundaries of Semantic Distraction: Dominance and Lexicality Act at Retrieval

    Get PDF
    Three experiments investigated memory for semantic information with the goal of determining boundary conditions for the manifestation of semantic auditory distraction. Irrelevant speech disrupted the free recall of semantic category-exemplars to an equal degree regardless of whether the speech coincided with presentation or test phases of the task (Experiment 1) and occurred regardless of whether it comprised random words or coherent sentences (Experiment 2). The effects of background speech were greater when the irrelevant speech was semantically related to the to-be-remembered material, but only when the irrelevant words were high in output dominance (Experiment 3). The implications of these findings in relation to the processing of task material and the processing of background speech is discussed
    corecore