9,053 research outputs found

    The Effect of a Reduced-Calorie Diet on alpha-2 Adrenergic Receptor Responsiveness in Abdominal Adipose Tissue in Obese Men During Exercise

    Get PDF
    There is at present an imperfect understanding of the effect of diet on availability of inhibitory receptors in fat cells during exercise among obese men. 

*Objective:* The purpose of this study was to determine whether diet results in downregulation of alpha-2 adrenergic receptor ([alpha]~2-AR~) messenger RNA (mRNA), improving metabolism in exercise in obese men. 

*Design:* One group, pre-test, post-test design.

*Measurements:* Subcutaneous abdominal adipose tissue was tested for physiologic response, such as changes in catecholamines and other markers of lipolysis measured during periods of exercise, before and after a 12-week diet. Plasma markers of lipolysis/antilipolytic activity (catecholamines [adrenaline and noradrenaline], NEFA, lactate, glucose, hematocrit, or insulin levels) were analyzed at four points in time in order to determine the effect of exercise on [alpha]~2-AR~ and [beta]-AR responsiveness to sympathetic stimulation.

*Subjects:* Otherwise healthy 18 to 45 year old obese men (defined as a body mass index (BMI) over 33 kg/m^2^).

*Results:* The 12-week reduced calorie diet did not result in improved metabolism. Instead, upregulation of alpha-2 adrenergic receptor ([alpha]~2-AR~) messenger RNA (mRNA) was observed. On average, [alpha]~2-AR~ mRNA levels (ratio of [alpha]~2-AR~ to cyclophilin) in subjects increased by 0.022-0.023 after the diet. The average differences in of [alpha]~2-AR~ mRNA and [beta]-AR mRNA measured before and after diet were both insignificant (M = 0.015) t(4) = -0.911; _P_ > 0.05; (M = 0.0139; t(4) = 0.077; _P_ > 0.05). 

*Conclusion:* The observed direction of change in [alpha]~2-AR~ mRNA levels, when viewed together with the stability of [beta]-AR mRNA levels, suggests that upregulation of [alpha]~2-AR~ rather than downregulation occurred. Downregulation would account for decreased lipolytic activity during exercise, future study is needed

    First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures

    Full text link
    We investigate the equation of state and elastic properties of hcp iron at high pressures and high temperatures using first principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. We calculate the Helmholtz free energy as a function of volume, temperature, and volume-conserving strains, including the electronic excitation contributions from band structures and lattice vibrational contributions from quasi-harmonic lattice dynamics. We perform detailed investigations on the behavior of elastic moduli and equation of state properties as functions of temperature and pressure, including the pressure-volume equation of state, bulk modulus, the thermal expansion coefficient, the Gruneisen ratio, and the shock Hugoniot. Detailed comparison has been made with available experimental measurements and theoretical predictions.Comment: 33 pages, 12 figure

    Vibrations of micro-eV energies in nanocrystalline microstructures

    Get PDF
    The phonon density of states of nanocrystalline bcc Fe and nanocrystalline fcc Ni3Fe were measured by inelastic neutron scattering in two different ranges of energy. As has been reported previously, the nanocrystalline materials showed enhancements in their phonon density of states at energies from 2 to 15 meV, compared to control samples composed of large crystals. The present measurements were extended to energies in the micro-eV range, and showed significant, but smaller, enhancements in the number of modes in the energy range from 5 to 18 mueV. These modes of micro-eV energies provide a long-wavelength limit that bounds the fraction of modes at milli-eV energies originating with the cooperative dynamics of the nanocrystalline microstructure

    Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    Get PDF
    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.Comment: 10 pages, 4 figure

    Mechanical similarity as a generalization of scale symmetry

    Full text link
    In this paper we study the symmetry known as mechanical similarity (LMS) and present for any monomial potential. We analyze it in the framework of the Koopman-von Neumann formulation of classical mechanics and prove that in this framework the LMS can be given a canonical implementation. We also show that the LMS is a generalization of the scale symmetry which is present only for the inverse square potential. Finally we study the main obstructions which one encounters in implementing the LMS at the quantum mechanical level.Comment: 9 pages, Latex, a new section adde

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    On the symmetry of the vacuum in theories with spontaneous symmetry breaking

    Full text link
    We review the usual account of the phenomena of spontaneous symmetry breaking (SSB), pointing out the common misunderstandings surrounding the issue, in particular within the context of quantum field theory. In fact, the common explanations one finds in this context, indicate that under certain conditions corresponding to the situation called SSB, the vacuum of the theory does not share the symmetries of the Lagrangian. We explain in detail why this statement is incorrect in general, and in what limited set of circumstances such situation could arise. We concentrate on the case of global symmetries, for which we found no satisfactory exposition in the existing literature, and briefly comment on the case of gauge symmetries where, although insufficiently publicized, accurate and complete descriptions exist. We briefly discuss the implications for the phenomenological manifestations usually attributed to the phenomena of spontaneous symmetry breaking, analyzing which might be affected by our analysis and which are not. In particular we describe the mass generation mechanism in a fully symmetric scheme (i.e., with a totally symmetric vacuum), and briefly discuss the implications of this analysis to the problem of formation of topological defects in the early universe

    Standard and Null Weak Values

    Full text link
    Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.Comment: 11 pages, 2 figures. To appear in Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrif

    Detecting level crossings without looking at the spectrum

    Full text link
    In many physical systems it is important to be aware of the crossings and avoided crossings which occur when eigenvalues of a physical observable are varied using an external parameter. We have discovered a powerful algebraic method of finding such crossings via a mapping to the problem of locating the roots of a polynomial in that parameter. We demonstrate our method on atoms and molecules in a magnetic field, where it has implications in the search for Feshbach resonances. In the atomic case our method allows us to point out a new class of invariants of the Breit-Rabi Hamiltonian of magnetic resonance. In the case of molecules, it enables us to find curve crossings with practically no knowledge of the corresponding Born-Oppenheimer potentials.Comment: 4 pages, new title, no figures, accepted by Phys. Rev. Let

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics
    • …
    corecore