16,291 research outputs found

    The Hartman effect and weak measurements "which are not really weak"

    Get PDF
    We show that in wavepacket tunnelling localisation of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wavepacket plays the role of the initial pointer state. Under tunnelling conditions such 'self measurement' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as post-selection in the final state becomes improbable. We also demonstrate that it is a good precision, or 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wavepacket with a width {\sigma} small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio {\sigma}/d.Comment: 6 pages, 1 figur

    Classical Correlations and Entanglement in Quantum Measurements

    Get PDF
    We analyze a quantum measurement where the apparatus is initially in a mixed state. We show that the amount of information gained in a measurement is not equal to the amount of entanglement between the system and the apparatus, but is instead equal to the degree of classical correlations between the two. As a consequence, we derive an uncertainty-like expression relating the information gain in the measurement and the initial mixedness of the apparatus. Final entanglement between the environment and the apparatus is also shown to be relevant for the efficiency of the measurement.Comment: to appear in Physical Review Letter

    Quasi-bound states in continuum

    Get PDF
    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band).Comment: 4 pages, 4figures, 1 tabl

    A Theory of Errors in Quantum Measurement

    Full text link
    It is common to model random errors in a classical measurement by the normal (Gaussian) distribution, because of the central limit theorem. In the quantum theory, the analogous hypothesis is that the matrix elements of the error in an observable are distributed normally. We obtain the probability distribution this implies for the outcome of a measurement, exactly for the case of 2x2 matrices and in the steepest descent approximation in general. Due to the phenomenon of `level repulsion', the probability distributions obtained are quite different from the Gaussian.Comment: Based on talk at "Spacetime and Fundamental Interactions: Quantum Aspects" A conference to honor A. P. Balachandran's 65th Birthda

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    Full text link
    We study the effects of preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well know dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures, stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to non-linear processes, and can only be consistently described by a bi-linear process map. A new process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bi-linear processes. We also emphasize the preparation procedure will have a non-trivial effect for any quantum experiment in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.

    Coarsening of Two Dimensional Foam on a Dome

    Get PDF
    In this paper we report on bubble growth rates and on the statistics of bubble topology for the coarsening of a dry foam contained in the narrow gap between two hemispheres. By contrast with coarsening in flat space, where six-sided bubbles neither grow nor shrink, we observe that six sided bubbles grow with time at a rate that depends on their size. This result agrees with the modification to von Neumann's law predicted by J.E. Avron and D. Levine. For bubbles with a different number of sides, except possibly seven, there is too much noise in the growth rate data to demonstrate a difference with coarsening in flat space. In terms of the statistics of bubble topology, we find fewer 3, 4, and 5 sided bubbles, and more 6 and greater sided bubbles, in comparison with the stationary distribution for coarsening in flat space. We also find good general agreement with the Aboav-Weaire law for the average number of sides of the neighbors of an n-sided bubble
    • …
    corecore