19,587 research outputs found
The Roughness Properties of Small Ice-Bearing Craters at the South Pole of the Moon: Implications for Accessing Fresh Water Ice in Future Surface Operations
The lunar poles provide a fascinating thermal environment capable of cold-trapping water ice on geologic timescales [1]. While there have been many observations indicating the presence of water ice at the lunar surface [e.g., 24], it is still not clear when this ice was delivered to the Moon. The timing of volatile dep-osition provides important constraints on the origin of lunar ice because different delivery mechanisms have been active at different times throughout lunar history. We previously found that some small (<10 km) cra-ters at the south pole of the Moon have morphologies suggestive of relatively young ages, on the basis of crisp crater rims [5]. These craters are too small to date with robust cratering statistics [5], but the possibility of ice in young craters is intriguing because it suggests that there is some recent and perhaps ongoing mechanism that is delivering or redistributing water to polar cold traps. Therefore, understanding if these small, ice-bear-ing craters are indeed young is essential in understand-ing the age and source of volatiles on the Moon. Here we take a new approach to understand the ages of these small polar cold traps: analyzing the roughness properties of small ice-bearing craters. It is well under-stood that impact crater properties (e.g., morphology, rock abundance, and roughness) evolve with time due to a variety of geologic and space-weathering processes [611]. Topographic roughness is a measurement of the local deviation from the mean topography, providing a measurement of surface texture, and is a powerful tool for evaluating surface evolution over geologic time [e.g., 1114]. In this study we analyze the roughness of southern lunar craters (40S90S) from all geologic eras, and determine how the roughness of small (<10 km) ice-bearing craters compare. We discuss the implications of the ages of ice-bearing south polar craters, and potential strategies for accessing fresh ice on the Moon
Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities
We study the formation of long-lived states near avoided resonance crossings
in open systems. For three different optical microcavities (rectangle, ellipse,
and semi-stadium) we provide numerical evidence that these states are localized
along periodic rays, resembling scarred states in closed systems. Our results
shed light on the morphology of long-lived states in open mesoscopic systems.Comment: 4 pages, 5 figures (in reduced quality), to appear in Phys. Rev. Let
3C 295, a cluster and its cooling flow at z=0.46
We present ROSAT HRI data of the distant and X-ray luminous (L_x(bol)=2.6^
{+0.4}_{-0.2} 10^{45}erg/sec) cluster of galaxies 3C 295. We fit both a
one-dimensional and a two-dimensional isothermal beta-model to the data, the
latter one taking into account the effects of the point spread function (PSF).
For the error analysis of the parameters of the two-dimensional model we
introduce a Monte-Carlo technique. Applying a substructure analysis, by
subtracting a cluster model from the data, we find no evidence for a merger,
but we see a decrement in emission South-East of the center of the cluster,
which might be due to absorption. We confirm previous results by Henry &
Henriksen(1986) that 3C 295 hosts a cooling flow. The equations for the simple
and idealized cooling flow analysis presented here are solely based on the
isothermal beta-model, which fits the data very well, including the center of
the cluster. We determine a cooling flow radius of 60-120kpc and mass accretion
rates of dot{M}=400-900 Msun/y, depending on the applied model and temperature
profile. We also investigate the effects of the ROSAT PSF on our estimate of
dot{M}, which tends to lead to a small overestimate of this quantity if not
taken into account. This increase of dot{M} (10-25%) can be explained by a
shallower gravitational potential inferred by the broader overall profile
caused by the PSF, which diminishes the efficiency of mass accretion. We also
determine the total mass of the cluster using the hydrostatic approach. At a
radius of 2.1 Mpc, we estimate the total mass of the cluster (M{tot}) to be
(9.2 +/- 2.7) 10^{14}Msun. For the gas to total mass ratio we get M{gas}/M{tot}
=0.17-0.31, in very good agreement with the results for other clusters of
galaxies, giving strong evidence for a low density universe.Comment: 26 pages, 7 figures, accepted for publication in Ap
Relaxation Phenomena in a System of Two Harmonic Oscillators
We study the process by which quantum correlations are created when an
interaction Hamiltonian is repeatedly applied to a system of two harmonic
oscillators for some characteristic time interval. We show that, for the case
where the oscillator frequencies are equal, the initial Maxwell-Boltzmann
distributions of the uncoupled parts evolve to a new equilibrium
Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzmann
distributions. Further, we discuss why the equilibrium reached when the two
oscillator frequencies are unequal, is not a thermal one. All the calculations
are exact and the results are obtained through an iterative process, without
using perturbation theory.Comment: 22 pages, 6 Figures, Added contents, to appear in PR
Quantum energy teleportation in a quantum Hall system
We propose an experimental method for a quantum protocol termed quantum
energy teleportation (QET), which allows energy transportation to a remote
location without physical carriers. Using a quantum Hall system as a realistic
model, we discuss the physical significance of QET and estimate the order of
energy gain using reasonable experimental parameters
NASA space station automation: AI-based technology review
Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
Quantum correlation games
A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games
The kernel Kalman rule: efficient nonparametric inference with recursive least squares
Nonparametric inference techniques provide promising tools
for probabilistic reasoning in high-dimensional nonlinear systems.
Most of these techniques embed distributions into reproducing
kernel Hilbert spaces (RKHS) and rely on the kernel
Bayes’ rule (KBR) to manipulate the embeddings. However,
the computational demands of the KBR scale poorly
with the number of samples and the KBR often suffers from
numerical instabilities. In this paper, we present the kernel
Kalman rule (KKR) as an alternative to the KBR. The derivation
of the KKR is based on recursive least squares, inspired
by the derivation of the Kalman innovation update. We apply
the KKR to filtering tasks where we use RKHS embeddings
to represent the belief state, resulting in the kernel Kalman filter
(KKF). We show on a nonlinear state estimation task with
high dimensional observations that our approach provides a
significantly improved estimation accuracy while the computational
demands are significantly decreased
Quantum rejection sampling
Rejection sampling is a well-known method to sample from a target
distribution, given the ability to sample from a given distribution. The method
has been first formalized by von Neumann (1951) and has many applications in
classical computing. We define a quantum analogue of rejection sampling: given
a black box producing a coherent superposition of (possibly unknown) quantum
states with some amplitudes, the problem is to prepare a coherent superposition
of the same states, albeit with different target amplitudes. The main result of
this paper is a tight characterization of the query complexity of this quantum
state generation problem. We exhibit an algorithm, which we call quantum
rejection sampling, and analyze its cost using semidefinite programming. Our
proof of a matching lower bound is based on the automorphism principle which
allows to symmetrize any algorithm over the automorphism group of the problem.
Our main technical innovation is an extension of the automorphism principle to
continuous groups that arise for quantum state generation problems where the
oracle encodes unknown quantum states, instead of just classical data.
Furthermore, we illustrate how quantum rejection sampling may be used as a
primitive in designing quantum algorithms, by providing three different
applications. We first show that it was implicitly used in the quantum
algorithm for linear systems of equations by Harrow, Hassidim and Lloyd.
Secondly, we show that it can be used to speed up the main step in the quantum
Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum
algorithm for the hidden shift problem of an arbitrary Boolean function and
relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to
appear in proceedings of ITCS 2012
Die Bedeutung von Metakognitionen für das Verständnis und die Psychotherapie von Zwang
The Importance of Metacognitions in the Understanding and Treatment of Obsessive Compulsive Disorder The present article discusses three cognitive approaches of Obsessive Compulsive Disorder (OCD): (1) Beck's theory of content-specificity, (2) Salkovskis' cognitive-behavioural approach and (3) Wells' more recent theory of metacognitions. Wells' approach is explained in more detail: the so called Self-Regulatory Executive Function model is presented as well as special aspects of thinking in OCD, for example the self-referential status of thinking, thinking in object mode and aspects of `thought-action fusion'. The relevance of Wells' metacognitive approach for the development and the maintenance of OCD is discussed. Furthermore, proposals are made on how to include these issues in the psychotherapy of OCD
- …
