16,404 research outputs found

    Laser-velocimeter flow-field measurements of an advanced turboprop

    Get PDF
    Non-intrusive measurements of velocity about a spinner-propeller-nacelle configuration at a Mach number of 0.8 were performed. A laser velocimeter, specifically developed for these measurements in the NASA Lewis 8-foot by 6-foot Supersonic Wind Tunnel, was used to measure the flow-field of the advanced swept SR-3 turboprop. The laser velocimeter uses an argon ion laser and a 2-color optics system to allow simultaneous measurements of 2-components of velocity. The axisymmetric nature of the propeller-nacelle flow-field permits two separate 2 dimensonal measurements to be combined into 3 dimensional velocity data. Presented are data ahead of and behind the prop blades and also a limited set in between the blades. Aspects of the observed flow-field such as the tip vortex are discussed

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    Lost in translation: data integration tools meet the Semantic Web (experiences from the Ondex project)

    Full text link
    More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information. We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platformsComment: Presented at DEIT, Data Engineering and Internet Technology, 2011 IEEE: CFP1113L-CD

    Growth and isoenzyme comparison of five isolates of Venturia inaequalis

    Get PDF
    Nous avons observé l'aspect du mycélium de cinq isolats du Venturia inaequalis. Des différences ont été constatées entre les différents isolats des races et l'isolât de la race 3 se distingue le plus des autres. Quinze systèmes enzymatiques et les protéines non-spécifiques ont été testés par électrophorèse sur gel de polyacrylamide ou d'amidon. Treize des systèmes enzymatiques ainsi que les protéines non-spécifiques révélées ne montraient pas de variation entre les isolats des races. Le patron isoenzymatique des esterases permet de séparer ces isolats car une seule isoenzyme est commune à tous et deux autres ne se retrouvent que chez les isolats des races 1 et 5. Une isoenzyme de F anhydrase carbonique est spécifique à l'isolât de la race 2.Observation of the mycelial aspect of five isolates representing the fîve races of Venturia inaequalis indicates that it is possible to differentiate these isolates by their growth pattern and the isolate of race 3 appears to be the most easily distinguishable. Fifteen enzyme systems and non-specific proteins have been analyzed by polyacrylamide and starch gel electrophoresis. Thirteen of the isoenzymes systems and non-specific proteins showed no variation among the five isolates. Esterases isoenzyme patterns allow separation of the isolates since only one isoenzyme is common to all isolates and two others are shared by isolates of race 1 and 5. One carbonic anhydrase isoenzyme was observed to be specific to the isolate of race 2

    How to detect level crossings without looking at the spectrum

    Full text link
    We remind the reader that it is possible to tell if two or more eigenvalues of a matrix are equal, without calculating the eigenvalues. We then use this property to detect (avoided) crossings in the spectra of quantum Hamiltonians representable by matrices. This approach provides a pedagogical introduction to (avoided) crossings, is capable of handling realistic Hamiltonians analytically, and offers a way to visualize crossings which is sometimes superior to that provided by the spectrum. We illustrate the method using the Breit-Rabi Hamiltonian to describe the hyperfine-Zeeman structure of the ground state hydrogen atom in a uniform magnetic field.Comment: Accepted for publication in the American Journal of Physic

    On Randomness in Quantum Mechanics

    Full text link
    The quantum mechanical probability densities are compared with the probability densities treated by the theory of random variables. The relevance of their difference for the interpretation of quantum mechanics is commented

    PPR7: A FORMAL AUDIT OF 228 PUBLISHED COST-UTILITY ANALYSES

    Get PDF

    Statistical mechanics of scale-free networks at a critical point: Complexity without irreversibility?

    Full text link
    Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes increase/decrease their utility by linking to nodes with a higher/lower degree than their own. We interpret utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging networks. We observe the existence of a critical temperature TcT_c where total energy (utility) and network-architecture undergo radical changes. Along this topological transition we obtain scale-free networks with complex hierarchical topology. In contrast to models for scale-free networks introduced so far, the scale-free nature emerges within equilibrium, with a clearly defined microcanonical ensemble and the principle of detailed balance strictly fulfilled. This provides clear evidence that 'complex' networks may arise without irreversibility. The results presented here should find a wide variety of applications in socio-economic statistical systems.Comment: 4 pages, 5 figure

    Decoherence-Based Quantum Zeno Effect in a Cavity-QED System

    Full text link
    We present a decoherence-based interpretation for the quantum Zeno effect (QZE) where measurements are dynamically treated as dispersive couplings of the measured system to the apparatus, rather than the von Neumann's projections. It is found that the explicit dependence of the survival probability on the decoherence time quantitatively distinguishes this dynamic QZE from the usual one based on projection measurements. By revisiting the cavity-QED experiment of the QZE [J. Bernu, et al., Phys. Rev. Lett, 101, 180402 (2008)], we suggest an alternative scheme to verify our theoretical consideration that frequent measurements slow down the increase of photon number inside a microcavity due to the nondemolition couplings with the atoms in large detuning.Comment: 4 pages, 3 figure

    Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer and the transition from quantum to classical

    Full text link
    Measurements transfer information about a system to the apparatus, and then further on -- to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide framework for the ``wavepacket collapse'', designating terminal points of quantum jumps, and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment -- the fittest quantum states that not only survive decoherence, but subvert it into carrying information about them -- into becoming a witness.Comment: For comments see Seth Lloyd, NATURE 450, 1167 (2007
    • …
    corecore