150 research outputs found

    A stupid dread of innovation

    Get PDF

    Malignancies in Pemphigus and Pemphigoid Diseases

    Get PDF

    Registered and Segmented Deformable Object Reconstruction from a Single View Point Cloud

    Full text link
    In deformable object manipulation, we often want to interact with specific segments of an object that are only defined in non-deformed models of the object. We thus require a system that can recognize and locate these segments in sensor data of deformed real world objects. This is normally done using deformable object registration, which is problem specific and complex to tune. Recent methods utilize neural occupancy functions to improve deformable object registration by registering to an object reconstruction. Going one step further, we propose a system that in addition to reconstruction learns segmentation of the reconstructed object. As the resulting output already contains the information about the segments, we can skip the registration process. Tested on a variety of deformable objects in simulation and the real world, we demonstrate that our method learns to robustly find these segments. We also introduce a simple sampling algorithm to generate better training data for occupancy learning.Comment: Accepted at WACV 202

    Humoral immune response after different SARS-CoV-2 vaccination regimens

    Get PDF
    Results After the first vaccination, the prevalence of IgG directed against the (trimeric) SARS-CoV-2 S-protein and its receptor binding domain (RBD) varied from 55-95% (AZD1222) to 100% (BNT162b2), depending on the vaccine regimen and the SARS-CoV-2 antigen used. The booster vaccination resulted in 100% seroconversion and the occurrence of highly avid IgG, which is directed against the S-protein subunit 1 and the RBD, as well as VNA against VOC B.1.1.7, while anti-NP IgGs were not detected. The results of the three anti-SARS-CoV-2 IgG tests showed an excellent correlation to the VNA titres against this VOC. The agreement of cVNT and sVNT results was good. However, the sVNT seems to overestimate non- and weak B.1.1.7-neutralising titres. The anti-SARS-CoV-2 IgG concentrations and the B.1.1.7-neutralising titres were significantly higher after heterologous vaccination compared to the homologous AZD1222 scheme. If VOC B.1.617.2 was used as antigen, significantly lower VNA titres were measured in the cVNT, and three (33.3%) vector vaccine recipients had a VNA titre < 1:10. Conclusions Heterologous SARS-CoV-2 vaccination leads to a strong antibody response with anti-SARS-CoV-2 IgG concentrations and VNA titres at a level comparable to that of a homologous BNT162b2 vaccination scheme. Irrespective of the chosen immunisation regime, highly avid IgG antibodies can be detected just 2 weeks after the second vaccine dose indicating the development of a robust humoral immunity. The reduction in the VNA titre against VOC B.1.617.2 observed in the subgroup of 26 individuals is remarkable and confirms the immune escape of the delta variant

    Determination of a Tentative Epidemiological Cut-Off Value (ECOFF) for Dalbavancin and Enterococcus faecium

    Get PDF
    Dalbavancin is a lipoglycopeptide antibiotic that shows potent activity against Gram-positive bacteria. It circumvents vanB-type glycopeptide resistance mechanisms; however, data on the in vitro activity of dalbavancin for Enterococcus faecium (E. faecium) are scarce, and thus, no breakpoints are provided. In recent years, there has been a continuing shift from vanA-type to vanB-type vancomycin-resistance in enterococci in Central Europe. Therefore, we aimed to investigate the in vitro activity of dalbavancin against different van-genotypes, with particular focus on vanB-type E. faecium. Dalbavancin susceptibility was determined for 25 van-negative, 50 vanA-positive, and 101 vanB-positive clinical E. faecium isolates (typed by cgMLST). Epidemiological Cut-Off Values (ECOFFs) were determined using ECOFFinder. For vanB-type E. faecium isolates, dalbavancin MICs were similar to those of vancomycin-susceptible isolates reaching values no higher than 0.125 mg/L. ECOFFs for van-negative and vanB-positive isolates were 0.5 mg/l and 0.25 mg/L respectively. In contrast, E. faecium possessing vanA predominantly showed dalbavancin MICs >8 mg/L, therefore preventing the determination of an ECOFF. We demonstrated the potent in vitro activity of dalbavancin against vancomycin-susceptible and vanB-type E. faecium. On the basis of the observed wildtype distribution, a dalbavancin MIC of 0.25 mg/L can be suggested as a tentative ECOFF for E. faecium.Dalbavancin is a lipoglycopeptide antibiotic that shows potent activity against Gram-positive bacteria. It circumvents vanB-type glycopeptide resistance mechanisms; however, data on the in vitro activity of dalbavancin for Enterococcus faecium (E. faecium) are scarce, and thus, no breakpoints are provided. In recent years, there has been a continuing shift from vanA-type to vanB-type vancomycin-resistance in enterococci in Central Europe. Therefore, we aimed to investigate the in vitro activity of dalbavancin against different van-genotypes, with particular focus on vanB-type E. faecium. Dalbavancin susceptibility was determined for 25 van-negative, 50 vanA-positive, and 101 vanB-positive clinical E. faecium isolates (typed by cgMLST). Epidemiological Cut-Off Values (ECOFFs) were determined using ECOFFinder. For vanB-type E. faecium isolates, dalbavancin MICs were similar to those of vancomycin-susceptible isolates reaching values no higher than 0.125 mg/L. ECOFFs for van-negative and vanB-positive isolates were 0.5 mg/l and 0.25 mg/L respectively. In contrast, E. faecium possessing vanA predominantly showed dalbavancin MICs >8 mg/L, therefore preventing the determination of an ECOFF. We demonstrated the potent in vitro activity of dalbavancin against vancomycin-susceptible and vanB-type E. faecium. On the basis of the observed wildtype distribution, a dalbavancin MIC of 0.25 mg/L can be suggested as a tentative ECOFF for E. faecium.Peer Reviewe

    Development of SARS-CoV-2 Specific IgG and Virus-Neutralizing Antibodies after Infection with Variants of Concern or Vaccination

    Get PDF
    The humoral immunity after SARS-CoV-2 infection or vaccination was examined. Convalescent sera after infection with variants of concern (VOCs: B.1.1.7, n = 10; B.1.351, n = 1) and sera from 100 vaccinees (Pfizer/BioNTech, BNT162b2, n = 33; Moderna, mRNA-1273, n = 11; AstraZeneca, ChAdOx1 nCoV-19/AZD1222, n = 56) were tested for the presence of immunoglobulin G (IgG) directed against the viral spike (S)-protein, its receptor-binding domain (RBD), the nucleoprotein (N) and for virus-neutralizing antibodies (VNA). For the latter, surrogate assays (sVNT) and a Vero-cell based neutralization test (cVNT) were used. Maturity of IgG was determined by measuring the avidity in an immunoblot (IB). Past VOC infection resulted in a broad reactivity of anti-S IgG (100%), anti-RBD IgG (100%), and anti-N IgG (91%), while latter were absent in 99% of vaccinees. Starting approximately two weeks after the first vaccine dose, anti-S IgG (75-100%) and particularly anti-RBD IgG (98-100%) were detectable. After the second dose, their titers increased and were higher than in the convalescents. The sVNT showed evidence of VNA in 91% of convalescents and in 80-100%/100% after first/second vaccine dose, respectively. After the second dose, an increase in VNA titer and IgGs of high avidity were demonstrated by cVNT and IB, respectively. Re-vaccination contributes to a more robust immune response

    Simplified Bioprinting-Based 3D Cell Culture Infection Models for Virus Detection

    Get PDF
    Studies of virus–host interactions in vitro may be hindered by biological characteristics of conventional monolayer cell cultures that differ from in vivo infection. Three-dimensional (3D) cell cultures show more in vivo-like characteristics and may represent a promising alternative for characterisation of infections. In this study, we established easy-to-handle cell culture platforms based on bioprinted 3D matrices for virus detection and characterisation. Different cell types were cultivated on these matrices and characterised for tissue-like growth characteristics regarding cell morphology and polarisation. Cells developed an in vivo-like morphology and long-term cultivation was possible on the matrices. Cell cultures were infected with viruses which differed in host range, tissue tropism, cytopathogenicity, and genomic organisation and virus morphology. Infections were characterised on molecular and imaging level. The transparent matrix substance allowed easy optical monitoring of cells and infection even via live-cell microscopy. In conclusion, we established an enhanced, standardised, easy-to-handle bioprinted 3D-cell culture system. The infection models are suitable for sensitive monitoring and characterisation of virus–host interactions and replication of different viruses under physiologically relevant conditions. Individual cell culture models can further be combined to a multicellular array. This generates a potent diagnostic tool for propagation and characterisation of viruses from diagnostic samples.Peer Reviewe

    Kinetics of Nucleo- and Spike Protein-Specific Immunoglobulin G and of Virus-Neutralizing Antibodies after SARS-CoV-2 Infection

    Get PDF
    Kinetics of neutralizing antibodies and immunoglobulin G (IgG) against the nucleo (N) or spike (S) proteins of severe acute respiratory syndrome coronavirus type2 (SARS-CoV-2) were studied in patients up to 165 days after PCR diagnosis of infection. Two immunoassays were selected out of eight IgG or total antibody tests by comparing their specificities and sensitivities. Sensitivities were calculated with convalescent sera from 26 PCR-confirmed cases, of which 76.9% had neutralizing antibodies (>1:10). Stored sera collected during the summer 2018 (N = 50) and winter seasons 2018/2019 (N = 50) were included to demonstrate the test specificities. IgG kinetics, avidities, and virus-neutralizing capacities were recorded over up to 165 days in eleven patients and five individuals from routine diagnostics. Sensitivities, specificities, and diagnostic accuracies ranged between 80.8-96.3%, 96.0-100%, and 93.7-99.2%, respectively. Nearly all results were confirmed with two different SARS-CoV-2-specific immunoblots. Six (54.4%) patients exhibited stable N-specific IgG indices over 120 days and longer; three of them developed IgG of high avidity. The S-specific IgG response was stable in ten (91.0%) patients, and eight (72.7%) had neutralizing antibodies. However, the titers were relatively low, suggesting that sustained humoral immunity is uncertain, especially after outpatient SARS-CoV-2 infection
    • …
    corecore