3,251 research outputs found
Analytical approximation of the exterior gravitational field of rotating neutron stars
It is known that B\"acklund transformations can be used to generate
stationary axisymmetric solutions of Einstein's vacuum field equations with any
number of constants. We will use this class of exact solutions to describe the
exterior vacuum region of numerically calculated neutron stars. Therefore we
study how an Ernst potential given on the rotation axis and containing an
arbitrary number of constants can be used to determine the metric everywhere.
Then we review two methods to determine those constants from a numerically
calculated solution. Finally, we compare the metric and physical properties of
our analytic solution with the numerical data and find excellent agreement even
for a small number of parameters.Comment: 9 pages, 10 figures, 3 table
Multifrequency observations of BL Lacertae in 1988
Simultaneous multiwavelength observations of BL Lacertae were performed on two occasions separated by month in 1988 June and July, covering the radio, submillimeter, infrared, optical, ultraviolet, and X-ray wave bands. In the wide-band photon spectra, the X-ray flux lies clearly above the extension of radio ultraviolet continuum as expected. The slope of the X-ray spectra is significantly flatter than that at optical ultraviolet regimes, and its spectral index 0.7-1.0 corresponds to the slope at submillimeter band. Comparison with earlier observations, in fact, indicates that the X-ray flux is correlated with the submillimeter band, and not with the others, and supports the SSC model
The contact process in heterogeneous and weakly-disordered systems
The critical behavior of the contact process (CP) in heterogeneous periodic
and weakly-disordered environments is investigated using the supercritical
series expansion and Monte Carlo (MC) simulations. Phase-separation lines and
critical exponents (from series expansion) and (from MC
simulations) are calculated. A general analytical expression for the locus of
critical points is suggested for the weak-disorder limit and confirmed by the
series expansion analysis and the MC simulations. Our results for the critical
exponents show that the CP in heterogeneous environments remains in the
directed percolation (DP) universality class, while for environments with
quenched disorder, the data are compatible with the scenario of continuously
changing critical exponents.Comment: 5 pages, 3 figure
Parent-of-origin effects cause genetic variation in pig performance traits
In order to assess the relative importance of genomic imprinting for the genetic variation of traits economically relevant for pork production, a data set containing 21 209 records from Large White pigs was analysed. A total of 33 traits for growth, carcass composition and meat quality were investigated. All traits were recorded between 1997 and 2006 at a test station in Switzerland and the pedigree included 15 747 ancestors. A model with two genetic effects for each animal was applied: the first corresponds to a paternal and the second to a maternal expression pattern of imprinted genes. The imprinting variance was estimated as the sum of both corresponding genetic variances per animal minus twice the covariance. The null hypothesis of no imprinting was tested by a restricted maximum likelihood ratio test with two degrees of freedom. Genomic imprinting significantly contributed to the genetic variance of 19 traits. The proportion of the total additive genetic variance that could be attributed to genomic imprinting was of the order between 5% and 19
Source integrals of asymptotic multipole moments
We derive source integrals for multipole moments that describe the behaviour
of static and axially symmetric spacetimes close to spatial infinity. We assume
isolated non-singular sources but will not restrict the matter content
otherwise. Some future applications of these source integrals of the asymptotic
multipole moments are outlined as well.Comment: 9 pages, 1 figure, contribution to the proceedings of the conference
"Relativity and Gravitation - 100 Years after Einstein in Prague", June
25-29, 2012, Pragu
Negative capacitance in organic semiconductor devices: bipolar injection and charge recombination mechanism
We report negative capacitance at low frequencies in organic semiconductor
based diodes and show that it appears only under bipolar injection conditions.
We account quantitatively for this phenomenon by the recombination current due
to electron-hole annihilation. Simple addition of the recombination current to
the well established model of space charge limited current in the presence of
traps, yields excellent fits to the experimentally measured admittance data.
The dependence of the extracted characteristic recombination time on the bias
voltage is indicative of a recombination process which is mediated by localized
traps.Comment: 3 pages, 3 figures, accepted for publication in Applied Physics
Letter
Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: A prerequisite to compare metrics
We demonstrate how one should transform correctly quasi-isotropic coordinates
to Weyl-Papapetrou coordinates in order to compare the metric around a rotating
star that has been constructed numerically in the former coordinates with an
axially symmetric stationary metric that is given through an analytical form in
the latter coordinates. Since a stationary metric associated with an isolated
object that is built numerically partly refers to a non-vacuum solution
(interior of the star) the transformation of its coordinates to Weyl-Papapetrou
coordinates, which are usually used to describe vacuum axisymmetric and
stationary solutions of Einstein equations, is not straightforward in the
non-vacuum region. If this point is \textit{not} taken into consideration, one
may end up to erroneous conclusions about how well a specific analytical metric
matches the metric around the star, due to fallacious coordinate
transformations.Comment: 18 pages, 2 figure
Non-linear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene
We investigate non-linear elastic deformations in the phase field crystal
model and derived amplitude equations formulations. Two sources of
non-linearity are found, one of them based on geometric non-linearity expressed
through a finite strain tensor. It reflects the Eulerian structure of the
continuum models and correctly describes the strain dependence of the
stiffness. In general, the relevant strain tensor is related to the left
Cauchy-Green deformation tensor. In isotropic one- and two-dimensional
situations the elastic energy can be expressed equivalently through the right
deformation tensor. The predicted isotropic low temperature non-linear elastic
effects are directly related to the Birch-Murnaghan equation of state with bulk
modulus derivative for bcc. A two-dimensional generalization suggests
. These predictions are in agreement with ab initio results for
large strain bulk deformations of various bcc elements and graphene. Physical
non-linearity arises if the strain dependence of the density wave amplitudes is
taken into account and leads to elastic weakening. For anisotropic deformations
the magnitudes of the amplitudes depend on their relative orientation to the
applied strain.Comment: 16 page
The contact process in disordered and periodic binary two-dimensional lattices
The critical behavior of the contact process in disordered and periodic
binary 2d-lattices is investigated numerically by means of Monte Carlo
simulations as well as via an analytical approximation and standard mean field
theory. Phase-separation lines calculated numerically are found to agree well
with analytical predictions around the homogeneous point. For the disordered
case, values of static scaling exponents obtained via quasi-stationary
simulations are found to change with disorder strength. In particular, the
finite-size scaling exponent of the density of infected sites approaches a
value consistent with the existence of an infinite-randomness fixed point as
conjectured before for the 2d disordered CP. At the same time, both dynamical
and static scaling exponents are found to coincide with the values established
for the homogeneous case thus confirming that the contact process in a
heterogeneous environment belongs to the directed percolation universality
class.Comment: submitted to Physical Review
- …
