6,339 research outputs found
Observational constraints on solar wind acceleration mechanisms
A complete theoretical understanding of the acceleration of the solar wind must account for at least three types of solar wind flow: high-speed streams associated with coronal holes, low-speed boundary layer flows associated with sector boundaries, and both high- and low-speed flows associated with impulsive ejections from the Sun. The properties of each type of flow are summarized
The detection of the plasma component of magnetohydrodynamic waves in space
Low frequency magnetohydrodynamic waves in interplanetary space examined with respect to variations of plasma velocity, magnetic field, and plasma densit
Collisions of rigidly rotating disks of dust in General Relativity
We discuss inelastic collisions of two rotating disks by using the
conservation laws for baryonic mass and angular momentum. In particular, we
formulate conditions for the formation of a new disk after the collision and
calculate the total energy loss to obtain upper limits for the emitted
gravitational energy.Comment: 30 pages, 9 figure
Non-existence of stationary two-black-hole configurations
We resume former discussions of the question, whether the spin-spin repulsion
and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two
separate (Killing-) horizons and apply the inverse (scattering) method to solve
it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black
hole criterion, we prove the non-existence of the equilibrium situation in
question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue
(GeRG journal
The interior of axisymmetric and stationary black holes: Numerical and analytical studies
We investigate the interior hyperbolic region of axisymmetric and stationary
black holes surrounded by a matter distribution. First, we treat the
corresponding initial value problem of the hyperbolic Einstein equations
numerically in terms of a single-domain fully pseudo-spectral scheme.
Thereafter, a rigorous mathematical approach is given, in which soliton methods
are utilized to derive an explicit relation between the event horizon and an
inner Cauchy horizon. This horizon arises as the boundary of the future domain
of dependence of the event horizon. Our numerical studies provide strong
evidence for the validity of the universal relation \Ap\Am = (8\pi J)^2 where
\Ap and \Am are the areas of event and inner Cauchy horizon respectively,
and denotes the angular momentum. With our analytical considerations we are
able to prove this relation rigorously.Comment: Proceedings of the Spanish Relativity Meeting ERE 2010, 10 pages, 5
figure
Adatom Diffusion at GaN (0001) and (000bar1) Surfaces
The diffusion of Ga and N adatoms has been studied for the technologically
relevant wurtzite (000bar1) and (0001) surfaces employing density-functional
theory. Our calculations reveal a very different diffusivity for Ga and N
adatoms on the equilibrium surfaces: While Ga is very mobile at typical growth
temperatures, the diffusion of N is by orders of magnitudes slower. These
results give a very detailed insight of how and under which growth conditions N
adatoms can be stabilized and efficiently incorporated at the surface. We
further find that the presence of excess N strongly increases the Ga diffusion
barrier and discuss the consequences for the growth of GaN.Comment: 4 pages, 4 figures, Appears in Appl. Phys. Lett. Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
The Post-Newtonian Approximation of the Rigidly Rotating Disc of Dust to Arbitrary Order
Using the analytic, global solution for the rigidly rotating disc of dust as
a starting point, an iteration scheme is presented for the calculation of an
arbitrary coefficient in the post-Newtonian (PN) approximation of this
solution. The coefficients were explicitly calculated up to the 12th PN level
and are listed in this paper up to the 4th PN level. The convergence of the
series is discussed and the approximation is found to be reliable even in
highly relativistic cases. Finally, the ergospheres are calculated at
increasing orders of the approximation and for increasingly relativistic
situations.Comment: 19 pages, 2 tables, 4 figures Accepted for publication in Phys. Rev.
Dirichlet Boundary Value Problems of the Ernst Equation
We demonstrate how the solution to an exterior Dirichlet boundary value
problem of the axisymmetric, stationary Einstein equations can be found in
terms of generalized solutions of the Backlund type. The proof that this
generalization procedure is valid is given, which also proves conjectures about
earlier representations of the gravitational field corresponding to rotating
disks of dust in terms of Backlund type solutions.Comment: 22 pages, to appear in Phys. Rev. D, Correction of a misprint in
equation (4
Non-existence of stationary two-black-hole configurations: The degenerate case
In a preceding paper we examined the question whether the spin-spin repulsion
and the gravitational attraction of two aligned sub-extremal black holes can
balance each other. Based on the solution of a boundary value problem for two
separate (Killing-) horizons and a novel black hole criterion we were able to
prove the non-existence of the equilibrium configuration in question. In this
paper we extend the non-existence proof to extremal black holes.Comment: 18 pages, 2 figure
Support of the infrared radiometer on the ST
The aim was to obtain practical experience, including observational experience, with bolometers suitable for the long wave infrared and with the filters necessary to define the spectral regions of interest. The techniques used in fabricating and testing bolometers and filters are described, and the results which were obtained to date are discussed
- …