32 research outputs found

    Site-directed Mutagenesis of Evolutionary Conserved Carboxylic Amino Acids in the Chitosanase from Streptomyces sp. N174 Reveals Two Residues Essential for Catalysis

    Get PDF
    The comparison of four sequences of prokaryotic chitosanases, belonging to the family 46 of glycosyl hydrolases, revealed a conserved N-terminal module of 50 residues, including five invariant carboxylic residues. To verify if some of these residues are important for catalytic activity in the chitosanase from Streptomyces sp. N174, these 5 residues were replaced by site-directed mutagenesis. Substitutions of Glu-22 or Asp-40 with sterically conservative (E22Q, D40N) or functionally conservative (E22D, D40E) residues reduced drastically specific activity and kcat, while Km− was only slightly changed. The other residues examined, Asp-6, Glu-36, and Asp-37, retained significant activity after mutation. Circular dichroism studies of the mutant chitosanases confirmed that the observed effects are not due to changes in secondary structure. These results suggested that Glu-22 and Asp-40 are directly involved in the catalytic center of the chitosanase and the other residues are not essential for catalytic activity

    Targeting intracellular B2 receptors using novel cell-penetrating antagonists to arrest growth and induce apoptosis in human triple-negative breast cancer

    Get PDF
    G protein-coupled receptors (GPCRs) are integral cell-surface proteins having a central role in tumor growth and metastasis. However, several GPCRs retain an atypical intracellular/nuclear location in various types of cancer. The pathological significance of this is currently unknown. Here we extend this observation by showing that the bradykinin B2R (BK-B2R) is nuclearly expressed in the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and in human clinical specimens of TNBC. We posited that these "nuclearized" receptors could be involved in oncogenic signaling linked to aberrant growth and survival maintenance of TNBC. We used cell-penetrating BK-B2R antagonists, including FR173657 and novel transducible, cell-permeable forms of the peptide B2R antagonist HOE 140 (NG68, NG134) to demonstrate their superior efficacy over impermeable ones (HOE 140), in blocking proliferation and promoting apoptosis of MDA-MB-231 cells. Some showed an even greater antineoplastic activity over conventional chemotherapeutic drugs in vitro. The cell-permeable B2R antagonists had less to no anticancer effects on B2R shRNA-knockdown or non-B2R expressing (COS-1) cells, indicating specificity in their action. Possible mechanisms of their anticancer effects may involve activation of p38kinase/p27Kip1pathways. Together, our data support the existence of a possible intracrine signaling pathway via internal/nuclear B2R, critical for the growth of TNBC cells, and identify new chemical entities that enable to target the corresponding intracellular GPCRs

    Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    Get PDF
    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites

    Specific degenerate codons enhanced selective expression of human parathyroid hormone in Escherichia coli

    Get PDF
    Specific degenerate codons in the amino-terminal region of a synthetic human parathyroid hormone (PTH) gene exerted dramatic effects on both products and yield of expression of this 84-amino acid polypeptide in Escherichia coli. With adenine-rich degenerate codons constituting the PTH-(1-5) region, intact PTH has been expressed as the only PTH product at 6.5 mg/liter. In contrast, with guanine-rich degenerate codons, the predominent product was analogue PTH-(8-84). Use of cytosine- or thymine-rich degenerate codons generated only a small amount of immunoreactive product (0.2 mg/l). With the amino terminal region reconstituted with adenine-rich degenerate codons, the mid and carboxyl regions of the synthetic gene were also reconstructed to imitate the E. coli-favored codon degeneracy. Expression yielded the intact PTH at 20 mg/liter. Gel electrophoresis and Western blots, with antibodies specific to the amino or carboxyl terminus of PTH, indicated only a single PTH-related polypeptide, with the same mobility as a synthetic intact PTH sample. Amino acid sequencing, composition analysis, mass spectrometry, and the adenylate cyclase bioassays confirmed the purified product as the processed intact PTH.Peer reviewed: YesNRC publication: Ye
    corecore