5,449 research outputs found

    Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91

    Get PDF
    We report a detection of the excited 2_(20)-2_(11) rotational transition of para-H_2O in APM 08279+5255 using the IRAM Plateau de Bure Interferometer. At z = 3.91, this is the highest-redshift detection of interstellar water to date. From large velocity gradient modeling, we conclude that this transition is predominantly radiatively pumped and on its own does not provide a good estimate of the water abundance. However, additional water transitions are predicted to be detectable in this source, which would lead to an improved excitation model. We also present a sensitive upper limit for the hydrogen fluoride (HF) J = 1-0 absorption toward APM 08279+5255. While the face-on geometry of this source is not favorable for absorption studies, the lack of HF absorption is still puzzling and may be indicative of a lower fluorine abundance at z = 3.91 compared with the Galactic interstellar medium

    Models for Dense Molecular Cloud Cores

    Get PDF
    We present a detailed model for the thermal balance, chemistry, and radiative transfer within quiescent dense molecular cloud cores that contain a central protostar. Large variations in the gas temperature are expected to affect the gas-phase chemistry dramatically; with the predicted H2O abundance varying by more than a factor of 1000 within cloud cores. Based on our predicitions for the thermal and chemical structure of the cores, we have constructed self-consistent radiative transfer models to compute line strengths and profiles for transitions of various isotopomers of CO, H2O, and OI. We predict the high lying transitions of water to be in absorption, and low gain maser emission at 183 GHz. We predict the 63 micron line of OI to be in absorption against the continuum for many sources. Finally, our model can also account successfully for recent ISO observations of absorption in rovibrational transitions of water toward the source AFGL 2591.Comment: 36 pages, 18 figures, LaTex, Accepted for publication by ApJ (11/97

    557 GHz Observations of Water Vapor Outflows from VY CMa and W Hydrae

    Get PDF
    We report the first detection of thermal water vapor emission in the 557 GHz, 1101011_{10} - 1_{01} ground state transition of ortho-H2_2O toward VY Canis Majoris. In observations obtained with the Submillimeter Wave Astronomy Satellite (SWAS), we measured a flux of 450\sim 450 Jy, in a spectrally resolved line centered on a velocity vLSR=25v_{LSR} = 25 km s1^{-1} with a full width half maximum of 35\sim 35 km s1^{-1}, somewhat dependent on the assumed line shape. We analyze the line shape in the context of three different radial outflow models for which we provide analytical expressions. We also detected a weaker 557 GHz emission line from W Hydrae. We find that these and other H2_2O emission line strengths scale as suggested by Zubko and Elitzur (2000).Comment: Astrophysical Journal Letters, accepte

    ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo

    Full text link
    (abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel maps for the brighter lines show a complex structure; specifically for the 13CO J=6-5 line different arcs are detected within the first few arcseconds. The curved structure present in the PV map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind, probably induced by a binary companion. From modeling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20 deg to the North-East and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. The ALMA data hence provide us for the first time with the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic
    corecore