455 research outputs found

    Shank's transformation revisited

    Get PDF
    AbstractA unified and self-contained approach to the block structure of Shank's table and its cross rules is presented. Wynn's regular and Cordellier's singular cross rules are derived by the Schur-complement method in a unified manner without appealing to Padé approximation. Moreover, by extending the definition of Shank's transformation to certain biinfinite sequences and by introducing a parameter it is possible to get more consistency with respect to Möbius transformations. It is well known that Padé approximants in general don't have this property

    Doping dependence of spin and orbital correlations in layered manganites

    Full text link
    We investigate the interplay between spin and orbital correlations in monolayer and bilayer manganites using an effective spin-orbital t-J model which treats explicitly the e_g orbital degrees of freedom coupled to classical t_{2g} spins. Using finite clusters with periodic boundary conditions, the orbital many-body problem is solved by exact diagonalization, either by optimizing spin configuration at zero temperature, or by using classical Monte-Carlo for the spin subsystem at finite temperature. In undoped two-dimensional clusters, a complementary behavior of orbital and spin correlations is found - the ferromagnetic spin order coexists with alternating orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin superexchange, coexists with ferro-orbital order. With finite crystal field term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2 orbital occupation under increasing doping. The present electronic model is sufficient to explain the stability of the CE phase in monolayer manganites at doping x=0.5, and also yields the C-type antiferromagnetic phase found in Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic phases and the accompanying orbital order change with increasing doping. Here the model predicts C-AF and G-AF phases at high doping x>0.75, as found experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.Comment: 23 pages, 21 figure

    Quantitative Antibiotic Use in Hospitals: Comparison of Measurements, Literature Review, and Recommendations for a Standard of Reporting

    Get PDF
    Abstract : Background: : Reports on antibiotic use often lack complete definitions of the units of measurement, hampering the comparison of data between hospitals or hospital units. Patients and Methods: : To compare methods of measures of in-hospital antimicrobial use, we determined aggregate in-hospital consumption data at a tertiary care university hospital using variations of nominators and denominators. Means of defined daily doses (DDD) of individual antimicrobials per 100 bed-days and per 100 admissions at each hospital and intensive care unit (ICU) were calculated. Furthermore, a literature review was performed for benchmarking purposes. Results: : Antibiotic use in different hospital units ranged from 0.105 to 323.37 DDD/100 bed-days and from 4.23 to 6737.92 DDD/100 admissions, respectively. Including the day of discharge in the denominator ‘bed-days' underestimated antibiotic use in various hospital wards by up to 27.7 DDD/100 bed-days (26.0%). Equating ‘numbers of patients admitted to the hospital' and ‘numbers of admissions' on a hospital level resulted in a difference of 192.6 DDD/100 admissions (64%) because patients transferred between hospital units accounted for multiple admissions. Likewise, reporting antimicrobial (Anatomical Therapeutic Chemical [ATC] group ‘J') instead of antibiotic (ATC group ‘J01') use led to a difference of 16.5 DDD/100 bed-days (19.3%). The literature review revealed underreporting of complete definitions of antibiotic use measurements. Conclusions: : Data on in-hospital antimicrobial use vary widely not only due to different antibiotic policies at different institutions but also due to different methods of measures. Adherence to the standard of reporting the methods of measurement is warranted for benchmarking and promotion of rational antimicrobial us

    Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films

    Full text link
    We report room-temperature ferromagnetism in highly conducting transparent anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) indicated negligible magnetic contaminants in the films. The presence of ferromagnetism with concomitant large carrier densities was determined by a combination of superconducting quantum interference device (SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD) and was supported by first-principle calculations. SXMCD and XAS measurements revealed a 90% contribution to ferromagnetism from the Ti ions and a 10% contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites though carrier activation was only 50% at 5% Ta concentration implying compensation by cationic defects. The role of Ti vacancy and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS) respectively. It was found that in films with strong ferromagnetism, the Ti vacancy signal was strong while Ti3+ signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localised magnetic moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to ferromagnetism in wide-band-gap semiconducting oxides without any magnetic elements.Comment: 21 pages, 10 figures, to appear in Philosophical Transaction - Royal Soc.

    Phonon spectra of pure and acceptor doped BaZrO3 investigated with visible and UV Raman spectroscopy

    Get PDF
    We report results from visible and UV Raman spectroscopy studies of the phonon spectra of a polycrystalline sample of the prototypical perovskite type oxide BaZrO3 and a 500 nm thick film of its Y-doped, proton conducting, counterpart BaZr0.8Y0.2O2.9. Analysis of the Raman spectra measured using different excitation energies (between 3.44 eV and 5.17 eV) reveals the activation of strong resonance Raman effects involving all lattice vibrational modes. Specifically, two characteristic energies were identified for BaZrO3, one around 5 eV and one at higher energy, respectively, and one for BaZr0.8Y0.2O2.9, above 5 eV. Apart from the large difference in spectral intensity between the non-resonant and resonant conditions, the spectra are overall similar to each other, suggesting that the vibrational spectra of the perovskites are stable when investigated using an UV laser as excitation source. These results encourage further use of UV Raman spectroscopy as a novel approach for the study of lattice vibrational dynamics and local structure in proton conducting perovskites, and open up for, e.g., time-resolved experiments on thin films targeted at understanding the role of lattice vibrations in proton transport in these kinds of materials

    The role of the pion cloud in electroproduction of the Δ\Delta(1232)

    Full text link
    We calculate the ratios E2/M1E2/M1 and C2/M1C2/M1 of the multipole amplitudes for electroproduction of the Δ\Delta(1232) in the range of photon virtuality 0<K2<10<-K^2<1~GeV2^2 in a chiral chromodielectric model and a linear σ\sigma-model. We find that relatively large experimental values can be explained in terms of the pion contribution alone; the contribution arising from d-state quark admixture remains below 10\%. We describe the pion cloud as a coherent state and use spin and isospin projection to obtain the physical nucleon and the Δ\Delta. The A1/2A_{1/2} and A3/2A_{3/2} amplitudes are reasonably well reproduced in the σ\sigma-model; in the chromodielectric model, however, they are a factor of two too small.Comment: 10 pages LaTeX2e, 3 LaTeX figures within the text; Requires elsart.cls (included in the self-unpacking uuencoded gzipped file). (Accepted for publication in Phys. Lett. B

    Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015

    Get PDF
    In this work, an evaluation of an intense biomass burning event observed over Ny-Ålesund (Spitsbergen, European Arctic) in July 2015 is presented. Data from the multi-wavelengths Raman-lidar KARL, a sun photometer and radiosonde measurements are used to derive some microphysical properties of the biomass burning aerosol as size distribution, refractive index and single scattering albedo at different relative humidities. Predominantly particles in the accumulation mode have been found with a bi-modal distribution and dominance of the smaller mode. Above 80% relative humidity, hygroscopic growth in terms of an increase of particle diameter and a slight decrease of the index of refraction (real and imaginary part) has been found. Values of the single scattering albedo around 0.9 both at 355 nm and 532 nm indicate some absorption by the aerosol. Values of the lidar ratio are around 26 sr for 355 nm and around 50 sr for 532 nm, almost independent of the relative humidity. Further, data from the photometer and surface radiation values from the local baseline surface radiation network (BSRN) have been applied to derive the radiative impact of the biomass burning event purely from observational data by comparison with a clear background day. We found a strong cooling for the visible radiation and a slight warming in the infra-red. The net aerosol forcing, derived by comparison with a clear background day purely from observational data, obtained a value of –95 W/m2 per unit AOD500

    Wave vector dependence of the dynamics in supercooled metallic liquids

    Full text link
    We present a detailed investigation of the wave vector dependence of collective atomic motion in Au49Cu26.9Si16.3Ag5.5Pd2.3 and Pd42.5Cu27Ni9.5P21 supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectroscopy in a precedent uncovered spatial range of only few interatomic distances, we show that the microscopic structural relaxation process follows in phase the structure with a marked slowing down at the main average inter-particle distance. This behavior is accompanied by dramatic changes in the shape of the intermediate scattering functions which suggest the presence of large dynamical heterogeneities at length-scales corresponding to few particle diameters. A ballistic-like mechanism of particle motion seems to govern the structural relaxation of the two systems in the highly viscous phase, likely associated to hopping of caged particles in agreement with theoretical studies
    corecore