384 research outputs found

    The Natural and Cultural Landscape of Greene County, Virginia

    Get PDF
    One hundred and fifty five miles west of the Atlantic coast a sign welcomes travelers to Greene County, Virginia. The natural landscape of the region is defined by the transition between the flattish Piedmont plateau and natural wall to the west known as the Blue Ridge Mountains. The lushly forested mountain slopes and nutrient rich upland soils have long provided economic and cultural foundations, but indiscriminate land use now offers multiple threats to the rural heritage of the County. Overtimbered mountain slopes and multiple pollutants have threatened the immune systems of the forest, leaving them vulnerable to natural pests. Soils which once provided the foundation for an agrarian culture were often depleted, and now serve as the nutrients for expansive real estate development. The common threads that once helped to define the community are disappearing in the wake of rampant population growth. While a native community struggles to find its voice amongst an influx of new settlers, the natural resources of the region are diminishing. This paper surveys the natural and human history of the region. It is the authors intent to identify that which threatens the natural and cultural landscape of Greene County. The paper also considers the success or failure of intervention strategies aimed at solving the identified problems, while recording the response of community members to such threats

    Observational study of regional aortic size referenced to body size: production of a cardiovascular magnetic resonance nomogram

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) is regarded as the gold standard for clinical assessment of the aorta, but normal dimensions are usually referenced to echocardiographic and computed tomography data and no large CMR normal reference range exists. As a result we aimed to 1) produce a normal CMR reference range of aortic diameters and 2) investigate the relationship between regional aortic size and body surface area (BSA) in a large group of healthy subjects with no vascular risk factors. Methods: 447 subjects (208 male, aged 19–70 years) without identifiable cardiac risk factors (BMI range 15.7–52.6 kg/m2) underwent CMR at 1.5 T to determine aortic diameter at three levels: the ascending aorta (Ao) and proximal descending aorta (PDA) at the level of the pulmonary artery, and the abdominal aorta (DDA), at a level 12 cm distal to the PDA. In addition, 201 of these subjects had aortic root imaging, allowing for measurements at the level of the aortic valve annulus (AV), aortic sinuses and sinotubular junction (STJ). Results: Normal diameters (mean ±2 SD) were; AV annulus male(♂) 24.4 ± 5.4, female (♀) 21.0 ± 3.6 mm, aortic sinus♂32.4 ± 7.7, ♀27.6 ± 5.8 mm, ST-junction ♂25.0 ± 7.4, ♀21.8 ± 5.4 mm, Ao ♂26.7 ± 7.7, ♀25.5 ± 7.4 mm, PDA ♂20.6 ± 5.6, +18.9 ± 4.0 mm, DDA ♂17.6 ± 5.1, ♀16.4 ± 4.0 mm. Aortic root and thoracic aortic diameters increased at all levels measured with BSA. No gender difference was seen in the degree of dilatation with increasing BSA (p > 0.5 for all analyses). Conclusion: Across both genders, increasing body size is characterized by a modest degree of aortic dilatation, even in the absence of traditional cardiovascular risk factors

    A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster

    Get PDF
    Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster

    Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    Get PDF
    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g Cm-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g Cm-2 yr-1 resulted from net CH4 emissions and the remaining 171 g Cm-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g Cm2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g Cm-2 yr-1 emitted as CH4 and -337 g Cm-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2–4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques

    The Lantern Vol. 28, No. 2, Spring 1961

    Get PDF
    • A New Bedlam • A Priori • Germ Warfare • Verse for a Sympathy Card • On Lamartine\u27s Crucifix • On Art • Hope • Hymn to the Morning • An Educator Speaks • Come Out • Insemination • A Day\u27s Hope • Laura • Walking Together • 20 September 1960 • 15 October 1960 • The Governor\u27s Dog • One of the Gang • Poem • Knowledge is Freedom • To Conservative Child • Seventeen American Skating Careers at the Zenithhttps://digitalcommons.ursinus.edu/lantern/1080/thumbnail.jp

    Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.

    Get PDF
    Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention
    • …
    corecore