13 research outputs found

    Radiative and non-radiative recombination in GaInN/GaN quantum wells

    Get PDF
    Die Gruppe-III-Nitride Galliumnitrid (GaN), Indiumnitrid (InN) und Aluminiumnitrid (AlN) bilden ein Halbleitermaterialsystem, dessen ternäre und quaternäre Mischverbindungen Al(x)In(y)Ga(1-x-y)N direkte Bandlücken besitzen, die sich über einen Energiebereich von 0.65 bis 6.2 eV erstrecken. Das Materialsystem deckt damit einen Spektralbereich ab, der von infrarot, über das gesamte sichtbare, bis nach ultraviolet reicht, wobei die direkte Bandlücke eine effiziente Lichterzeugung in diesen Halbleitern ermöglicht. So werden Quantenfilmstrukturen aus dem Materialsystem in optoelektronischen Bauteilen wie LEDs und Halbleiterlasern verwendet. Die Untersuchungen in dieser Arbeit beschäftigen sich mit dem Auftreten von invers pyramidalen Aussparungen mit hexagonalem Grundriss (V-Defekte) in der Kristallstruktur von mittels Metallorganischer Gasphasenepitaxie gewachsenen GaInN/GaN Quantenfilmstrukturen und den Auswirkungen, die die V-Defekte bzw. die Quantenfilmstrukturen auf den Kristallfacetten der V-Defekte auf die Emissions- und Rekombinationseigenschaften der gesamten GaInN/GaN Quantenfilmstrukturen haben. Dabei wird insbesondere auf die Wirksamkeit der V-Defekte zur Unterdrückung nichtstrahlender Verlustprozesse von optisch erzeugten Überschussladungsträgern im Quantenfilmsystem und auf die Dynamik der Rekombinationsprozesse eingegangen. Ausserdem werden die nichtstrahlenden Verluste in Halbleiterlaserstrukturen mit GaInN/GaN Quantenfilmen als verstärkendes Medium, die Bedeutung von V-Defekten für Laserstrukturen und die Auswirkungen der Laseralterung auf die Quantenfilmstruktur untersucht. Die Quantenfilmstrukturen wurden mittels temperaturabhängiger zeitaufgelöster Photolumineszenz, temperatur- und leistungsabhängiger Photolumineszenz im Dauerstrichbetrieb und der optischen Verstärkungsspektroskopie mit der variablen Strichlängenmethode studiert.The group-III-nitrides, gallium nitride (GaN), indium nitride (InN), and aluminium nitride (AlN), represent a system of semiconductors which ternary and quaternary compositions Al(x)In(y)Ga(1-x-y)N have direct bandgaps with energies from 0.65eV to 6.2eV. So, the group-III-nitrides cover a spectral range from infrared, via the whole visible, to the ultaraviolet spectral region. The direct bandgap allows for an efficient light generation in these semiconductors. Therefore, group-III-nitride quantum well structures are used in optoelectronic devices like LEDs or semiconductor lasers. These studies deal with the formation of inverse pyramidal pits with hexagonal base (V-shaped pits) in the crystalline structure of MOVPE-grown (metal organic vapour phase epitaxy) GaInN/GaN quantum well structures and with the effects of the V-Shaped pits or the quantum wells on the V-shaped pit's facets on the emission and recombination characteristics of the whole GaInN/GaN quantum well structure. Especially the effectiveness of the V-shaped pits, suppressing the nonradiative recombination of optically generated excess carriers in the quantum well structure, and the recombination dynamics of excess carriers in the quantum wells are analyzed. Furthermore, the nonradiative recombination in semiconductor lasers with GaInN/GaN quantum wells in the active region, the relevance of V-shaped pits for laser structures, and the effects of aging on the GaInN/GaN quantum wells of laser structures are studied. The quantum well structures are examined with temperature dependent time-resolved photoluminescence, temperature and excitation power dependent contiuous-wave photoluminescence, and optical gain measurements with the variable stripe length method

    Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxy

    Get PDF
    Gallium phosphide (GaP) is a III–V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal–oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer. Our results show that GaP islands with sizes on the order of hundreds of nanometers can be successfully grown on CMOS-compatible wafers. These islands exhibit a zinc-blende phase and possess optoelectronic properties similar to those of a high-quality epitaxial GaP layer. This result marks a notable advancement in the seamless integration of GaP-based devices with high scalability into Si nanotechnology and integrated optoelectronics.Deutsche Forschungsgemeinschaft 10.13039/501100001659European Commission 10.13039/501100008530Peer Reviewe

    Status and Prospects of AlN Templates on Sapphire for Ultraviolet Light‐Emitting Diodes

    Get PDF
    Herein, the scope is to provide an overview on the current status of AlN/sapphire templates for ultraviolet B (UVB) and ultraviolet C (UVC) light‐emitting diodes (LEDs) with focus on the work done previously. Furthermore, approaches to improve the properties of such AlN/sapphire templates by the combination of high‐temperature annealing (HTA) and patterned AlN/sapphire interfaces are discussed. While the beneficial effect of HTA is demonstrated for UVC LEDs, the growth of relaxed AlGaN buffer layers on HTA AlN is a challenge. To achieve relaxed AlGaN with a low dislocation density, the applicability of HTA for AlGaN is investigated.BMBF, 03ZZ0112A&B, Zwanzig20 - Advanced UV for Life - Verbundvorhaben: AlN-SubstrateBMBF, 03ZZ0134B&C, Zwanzig20 - Advanced UV for Life - Verbundvorhaben: UV PowerBMBF, 03ZZ0138A&B, Zwanzig20 - Advanced UV for Life - Verbundvorhaben: UV-LEDs für ultrakurze Wellenlängen um 230 nm auf Basis von AIN-Substraten (AIN-230nm)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Role of substrate quality on the performance of semipolar (11 2 - 2) InGaN light-emitting diodes

    Get PDF
    We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density

    Improving AlN Crystal Quality and Strain Management on Nanopatterned Sapphire Substrates by High‐Temperature Annealing for UVC Light‐Emitting Diodes

    Get PDF
    Herein, AlN growth by metalorganic vapor‐phase epitaxy on hole‐type nanopatterned sapphire substrates is investigated. Cracking occurs for an unexpectedly thin‐layer thickness, which is associated to altered nucleation conditions caused by the sapphire pattern. To overcome the obstacle of cracking and at the same time to decrease the threading dislocation density by an order of magnitude, high‐temperature annealing (HTA) of a 300 nm‐thick AlN starting layer is successfully introduced. By this method, 800 nm‐thick, fully coalesced and crack‐free AlN is grown on 2 in. nanopatterned sapphire wafers. The usability of such templates as basis for UVC light‐emitting diodes (LEDs) is furthermore proved by subsequent growth of an UVC‐LED heterostructure with single peak emission at 265 nm. Prerequisites for the enhancement of the light extraction efficiency by hole‐type nanopatterned sapphire substrates are discussed.BMBF, 03ZZ0134B, Zwanzig20 - Advanced UV for Life - Verbundvorhaben: UV Power; TP2: Entwicklung von high-power UVB-LEDs um 300 nmDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
    corecore