839 research outputs found

    Maximum or Minimum Differentiation? An Empirical Investigation into the Location of Firms

    Get PDF
    We empirically test some implications from location theory using the location of Los Angeles area gasoline stations in physical space and in the space of product attributes. We consider the effect of demand patterns, entry costs, and several proxies for competition -- the total number of stations, the proportion of independent stations, and the proportion of same-brand stations in a market -- on the tendency for a gasoline station to be physically located more or less closely to its competitors. Using an estimation procedure that controls for spatial correlation and controlling for market characteristics as well as non- spatial product attributes, we find that firms locate their stations in an attempt to spatially differentiate their product as general market competition increases. In other words, the incentive to differentiate in order to soften price competition dominates the incentive to cluster locations to attract consumers from rivals. We also find that spatial differentiation increases as stations become more differentiated in other station characteristics.product differentiation, spatial theory, location theory, retail gasoline

    Global cross-over dynamics of single semiflexible polymers

    Full text link
    We present a mean-field dynamical theory for single semiflexible polymers which can precisely capture, without fitting parameters, recent fluorescence correlation spectroscopy results on single monomer kinetics of DNA strands in solution. Our approach works globally, covering three decades of strand length and five decades of time: it includes the complex cross-overs occurring between stiffness-dominated and flexible bending modes, along with larger-scale rotational and center-of-mass motion. The accuracy of the theory stems in part from long-range hydrodynamic coupling between the monomers, which makes a mean-field description more realistic. Its validity extends even to short, stiff fragments, where we also test the theory through Brownian hydrodynamics simulations.Comment: 6 pages, 5 figures; updated with minor changes to reflect published versio

    Interfaces and Grain Boundaries of Lamellar Phases

    Full text link
    Interfaces between lamellar and disordered phases, and grain boundaries within lamellar phases, are investigated employing a simple Landau free energy functional. The former are examined using analytic, approximate methods in the weak segregation limit, leading to density profiles which can extend over many wavelengths of the lamellar phase. The latter are studied numerically and exactly. We find a change from smooth chevron configurations typical of small tilt angles to distorted omega configurations at large tilt angles in agreement with experiment.Comment: 9 pages, 6 figures 9 pages, 6 figure

    Discrete elastic model for stretching-induced flagellar polymorphs

    Full text link
    Force-induced reversible transformations between coiled and normal polymorphs of bacterial flagella have been observed in recent optical-tweezer experiment. We introduce a discrete elastic rod model with two competing helical states governed by a fluctuating spin-like variable that represents the underlying conformational states of flagellin monomers. Using hybrid Brownian dynamics Monte-Carlo simulations, we show that a helix undergoes shape transitions dominated by domain wall nucleation and motion in response to externally applied uniaxial tension. A scaling argument for the critical force is presented in good agreement with experimental and simulation results. Stretching rate-dependent elasticity including a buckling instability are found, also consistent with the experiment

    Counterions at Charged Cylinders: Criticality and universality beyond mean-field

    Full text link
    The counterion-condensation transition at charged cylinders is studied using Monte-Carlo simulation methods. Employing logarithmically rescaled radial coordinates, large system sizes are tractable and the critical behavior is determined by a combined finite-size and finite-ion-number analysis. Critical counterion localization exponents are introduced and found to be in accord with mean-field theory both in 2 and 3 dimensions. In 3D the heat capacity shows a universal jump at the transition, while in 2D, it consists of discrete peaks where single counterions successively condense.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Lett. (2005

    Water-like hierarchy of anomalies in a continuous spherical shouldered potential

    Get PDF
    We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [cond-mat/0703681, to appear on Journal of Molecular Liquids], that displays liquid-liquid coexistence with a critical point and water-like density anomaly. Here we find diffusion and structural anomalies. These anomalies occur with the same hierarchy that characterizes water. Yet our analysis shows differences with respect to the water case. Therefore, many of the anomalous features of water could be present in isotropic systems with soft-core attractive potentials, such as colloids or liquid metals, consistent with recent experiments showing polyamorphism in metallic glasses.Comment: 27 pages, 9 figures. to appear in J. Chem. Phy

    Nonlinear fractional waves at elastic interfaces

    Get PDF
    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface

    Thermodynamic and dynamic anomalies for a three dimensional isotropic core-softened potential

    Get PDF
    Using molecular dynamics simulations and integral equations (Rogers-Young, Percus-Yevick and hypernetted chain closures) we investigate the thermodynamic of particles interacting with continuous core-softened intermolecular potential. Dynamic properties are also analyzed by the simulations. We show that, for a chosen shape of the potential, the density, at constant pressure, has a maximum for a certain temperature. The line of temperatures of maximum density (TMD) was determined in the pressure-temperature phase diagram. Similarly the diffusion constant at a constant temperature, DD, has a maximum at a density ρmax\rho_{max} and a minimum at a density ρmin<ρmax\rho_{min}<\rho_{max}. In the pressure-temperature phase-diagram the line of extrema in diffusivity is outside of TMD line. Although in this interparticle potential lacks directionality, this is the same behavior observed in SPC/E water.Comment: 16 page

    Electrostatic colloid-membrane complexation

    Full text link
    We investigate numerically and on the scaling level the adsorption of a charged colloid on an oppositely charged flexible membrane. We show that the long ranged character of the electrostatic interaction leads to a wrapping reentrance of the complex as the salt concentration is varied. The membrane wrapping depends on the size of the colloid and on the salt concentration and only for intermediate salt concentration and colloid sizes we find full wrapping. From the scaling model we derive simple relations for the phase boundaries between the different states of the complex, which agree well with the numerical minimization of the free energy.Comment: 7 page, 11 figure
    corecore