9 research outputs found

    Quantifying Variability In The Alaskan Black Spruce Ecosystem: Linking Vegetation, Carbon, And Fire History

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2004The boreal forest is the largest terrestrial ecosystem in North America, one of the least disturbed by humans, and most disturbed by fire. This combination makes it an ideal system to explore the environmental controls over species composition, the relative importance of abiotic factors and floristic composition in governing ecosystem processes, and the importance of legacy effects at a large regional spatial scale. In the boreal region of interior Alaska, Picea mariana (black spruce) is the predominant tree species and spans a wide range of habitats, including north-facing slopes with permafrost, lowland bogs, and high dry ridge-tops. This research uses a combination of site description and analysis from both locally near Fairbanks (54) and across a large region and number of sites (146) to answer questions about the regional variability and biodiversity of the black spruce forest type. Based on the relationships between species composition and environmental factors, topography and elevation were the most important gradients explaining species composition locally in the Fairbanks region, and mineral soil pH was the overriding environmental gradient across interior Alaska. To describe the floristic variability, I separated the black spruce forest type into three floristically-based community types and five community subtypes. Variability in ecosystem properties among black spruce stands was as large as that documented previously among all forest types in the central interior of Alaska. The variability in plant community composition was at least as effective as environmental or abiotic factors and stand characteristics as a predictor of soil C pools in the black spruce forest type of interior Alaska. The variability in species composition at the community subtype-level was related to a combination of environmental factors and fire history. Together, these results provide a foundation for future work in black spruce ecosystems of interior Alaska, and contribute to our understanding of the regional variability and biodiversity of the black spruce forest type.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat

    Forest Structure and Downed Woody Debris in Boreal, Temperate, and Tropical Forest Fragments

    Get PDF
    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10–14 ha), medium (33 to 60 ha), and large (100–240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels

    Forest Structure and Downed Woody Debris in Boreal, Temperate, and Tropical Forest Fragments

    Get PDF
    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10–14 ha), medium (33 to 60 ha), and large (100–240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels

    Decay of Aspen (\u3ci\u3ePopulus tremuloides\u3c/i\u3e Michx.) Wood in Moist and Dry Boreal, Temperate, and Tropical Forest Fragments

    Get PDF
    In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of fragmentation on wood decomposition rates as related to fragment size, forest age (and/ or structure) and climate at the macro- and meso-scales. Fragment sizes represented the landscape variability within a climatic region. Overall, the mean small fragments area ranged from 10–14 ha, medium-sized fragments 33 to 60 ha, and large fragments 100–240 ha. We found that: i) aspen stakes decayed fastest in the tropical sites, and the slowest in the temperate forest fragments, ii) the percent of mass remaining was significantly greater in dry than in moist forests in boreal and temperate fragments, while the opposite was true for the tropical forest fragments, iii) no effect of fragment size on the percent of mass remaining of aspen stakes in the boreal sites, temperate dry, and tropical moist forests, and iv) no significant differences of aspen wood decay between forest edges and interior forest in boreal, temperate and tropical fragments. We conclude that: i) moisture condition is an important control over wood decomposition over broad climate gradients; and that such relationship can be nonlinear, and ii) the presence of a particular group of organism (termites) can significantly alter the decay rates of wood more than what might be predicted based on climatic factors alone. Biotic controls on wood decay might be more important predictors of wood decay in tropical regions, while abiotic constraints seems to be important determinants of decay in cold forested fragments

    Chapter 6: Vegetation

    No full text
    This assessment evaluates the effects of future climate change on a select set of ecological systems and ecosystem services in Alaska’s Kenai Peninsula and Chugach National Forest regions. The focus of the assessment was established during a multi-agency/organization workshop that established the goal to conduct a rigorous evaluation of a limited range of topics rather than produce a broad overview. The report explores the potential consequences of climate change for: (a) snowpack, glaciers, and winter recreation; (b) coastal landscapes and associated environments, (c) vegetation, (d) salmon, and (e) a select set of wildlife species. During the next half century, directional change associated with warming temperatures and increased precipitation will result in dramatic reductions in snow cover at low elevations, continued retreat of glaciers, substantial changes in the hydrologic regime for an estimated 8.5 percent of watersheds, and potentially an increase in the abundance of pink salmon. In contrast to some portions of the Earth, apparent sealevel rise is likely to be low for much of the assessment region owing to interactions between tectonic processes and sea conditions. Shrubs and forests are projected to continue moving to higher elevations, reducing the extent of alpine tundra and potentially further affecting snow levels. Opportunities for alternative forms of outdoor recreation and subsistence activities that include sled-dog mushing, hiking, hunting, and travel using across-snow vehicles will change as snowpack levels, frozen soils, and vegetation change over time. There was a projected 66-percent increase in the estimated value of human structures (e.g. homes, businesses) that are at risk to fire in the next half century on the Kenai Peninsula, and a potential expansion of invasive plants, particularly along roads, trails, and waterways

    Soil carbon distribution in Alaska in relation to soil-forming factors

    Get PDF
    The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was conducted from a recently compiled soil carbon database. Temperature and landform type were the dominant controls on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with latitude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more continental, suggesting that the lower productivity, higher decomposition rates and fire activity, common in continental climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes. Thus, themagnitudes of SOC change across temperature gradients were non-uniformand depended on landform type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age, aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils, especially at depths\u3e1 m in order to fully understand the effects of climate on soil carbon in Alaska
    corecore