68 research outputs found

    Compositional Diversity in the Atmospheres of Hot Neptunes, With Application to GJ 436b

    Get PDF
    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called hot Neptunes —are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H2-dominated atmospheres to more Venus-like, CO2-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H2O, CO, CO2, and even O2-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH4-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes

    Clinical and biochemical prediction of early fatal outcome following hip fracture in the elderly

    Get PDF
    Hip fracture, a moderate musculoskeletal trauma, is associated with a high postoperative mortality. Most patients are elderly, with comorbid conditions and often with heart disease. The objective of this study was to find out if clinical parameters and analyses of specific muscle enzymes could predict three month postoperative mortality. A total of 302 patients above 75 years of age with hip fracture were consecutively enrolled. Baseline information on age, sex and comorbidity assessed with the American Society of Anesthesiologists (ASA) score was obtained before surgery. Creatine kinase (CK), myocardium-specific creatine kinase (CK-MB) and troponin T (TnT) were analysed from venous blood, collected the day before surgery (−1) and postoperatively, within 24 hours (0) and on days one (+1) and four (+4). The overall three month mortality was 19.5%. Multivariate analyses showed that age, male sex and comorbidity (ASA) correlated with mortality (p = 0.027, p = 0.002, p < 0.001, respectively). Surgery induced a two- to threefold increase of CK and CK-MB but without any correlation with mortality. However, high TnT levels >0.04 μg/l correlated significantly with death (days −1, +1 and +4, p = 0.003, p = 0.005 and p = 0.003, respectively). Multivariate analyses, adjusted for age, sex and ASA category, confirmed this correlation (day +4, p = 0.008). Thus, in elderly patients with comorbidities undergoing hip fracture surgery information on sex, age, ASA category and postoperative laboratory analyses on TnT provide the clinicians with useful information on patients at risk of fatal outcome

    Symmetry analysis applied to multi-agent systems

    No full text
    The multi-agent system of interest is a planar formation control problem, where each agent references a pre-specified number of agents. Since the formation control law does not specify the location and orientation of the formation in planar space, continuous symmetries arise. Through a previously established methodology, it is possible to calculate the continuous symmetries for a system of second order differential equations. The symmetries were found for a specific neighbor graph and were extended to the general case. The symmetries associated with planar motion were used to define coordinate transformations that reduced the system of interest to one in which the origin is the set of all possible formations. It is now possible to perform stability analysis of the formation by studying the stability properties of the origin of the reduced system. This will be beneficial for showing extended stability properties, like boundedness
    corecore