1,199 research outputs found

    Gastrointestinal helminths in calves and cows in an organic milk production system

    Get PDF
    The main aim of this study was to determine the distribution of populations of gastrointestinal helminths in lactating crossbred cows and calves during the grazing season in an organic milk production system. In addition, the potential importance of the peripartum in relation to the parasite load was examined. Between January 2007 and December 2008, parasitological fecal examinations were performed on cattle belonging to the Integrated Animal Production Program of Embrapa Agrobiology. The cows' parasite load remained low during the study period, and there were no statistical differences (p > 0.05) in comparisons between the seasons. The average egg count showed a positive correlation (0.80) with the peripartum, such that egg elimination per gram (p < 0.05) was higher during the week of labor than during the pre and postpartum periods. Calves showed low parasite loads, with significantly higher egg elimination (p < 0.05) during the winter. The study indicated that infection with gastrointestinal helminths was not a limiting factor for milk production in the organic system. Specifically, it was concluded that the nematode load can be maintained at moderate levels throughout the production system, even in the absence of anthelmintic treatment

    Analgesic action of laser therapy (LLLT) in an animal model

    Get PDF
    OBJECTIVES: To evaluate the analgesic effect of laser therapy on healthy tissue of mice.STUDY DESIGN: Forty-five animals were divided in three groups of 15: A--infrared laser irradiation (830 nm, Kondortech, São Carlos, SP, Brazil); B--red laser irradiation (660 nm, Kondortech, São Carlos, SP, Brazil); C-- ham irradiation with laser unit off. After laser application, the mice remained immobilized for the injection of 30 microl of 2% formalin in the plantar pad of the irradiated hind paw. The time that the mouse kept the hind paw lifted was measured at 5 min intervals for 30 minutes.RESULTS: Results showed statistically significant differences comparing the control group with the infrared laser group at 5, 20, 25 and 30 accumulated minutes, and with the red laser group at all time points. The analysis of partial times, at each 5 minutes, showed statistically significant differences between the control and the laser groups up to 20 minutes.CONCLUSIONS: Laser therapy had an analgesic effect and red laser had the best results

    Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles

    Get PDF
    We unveil a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on two-dimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.Comment: 5 pages, 5 figure

    Broken symmetry states and divergent resistance in suspended bilayer graphene

    Get PDF
    Graphene [1] and its bilayer have generated tremendous excitement in the physics community due to their unique electronic properties [2]. The intrinsic physics of these materials, however, is partially masked by disorder, which can arise from various sources such as ripples [3] or charged impurities [4]. Recent improvements in quality have been achieved by suspending graphene flakes [5,6], yielding samples with very high mobilities and little charge inhomogeneity. Here we report the fabrication of suspended bilayer graphene devices with very little disorder. We observe fully developed quantized Hall states at magnetic fields of 0.2 T, as well as broken symmetry states at intermediate filling factors ν=0\nu = 0, ±1\pm 1, ±2\pm 2 and ±3\pm 3. The devices exhibit extremely high resistance in the ν=0\nu = 0 state that grows with magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field, indicating that the broken symmetry states arise from many-body interactions.Comment: 23 pages, including 4 figures and supplementary information; accepted to Nature Physic

    Numerical and experimental analysis of wrinkling during the cup drawing of an AA5042 aluminium alloy

    Get PDF
    The recent trend to reduce the thickness of metallic sheets used in forming processes strongly increases the likelihood of the occurrence of wrinkling. Thus, in order to obtain defect-free components, the prediction of this kind of defect becomes extremely important in the tool design and selection of process parameters. In this study, the sheet metal forming process proposed as a benchmark in the Numisheet 2014 conference is selected to analyse the influence of the tool geometry on wrinkling behaviour, as well as the reliability of the developed numerical model. The side-wall wrinkling during the deep drawing process of a cylindrical cup in AA5042 aluminium alloy is investigated through finite element simulation and experimental measurements. The material plastic anisotropy is modelled with an advanced yield criterion beyond the isotropic (von Mises) material behaviour. The results show that the shape of the wrinkles predicted by the numerical model is strongly affected by the finite element mesh used in the blank discretization. The accurate modelling of the plastic anisotropy of the aluminium alloy yields numerical results that are in good agreement with the experiments, particularly the shape and location of the wrinkles. The predicted punch force evolution is strongly influenced by the friction coefficient used in the model. Moreover, the two punch geometries provide drawn cups with different wrinkle waves, mainly differing in amplitude.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014 and P.D. Barros is grateful to the FCT for the PhD Grant SFRH/BD/98545/2013info:eu-repo/semantics/publishedVersio

    On the residual opening of hydraulic fractures

    Get PDF
    Hydraulic stimulation technologies are widely applied across resource and power generation industries to increase the productivity of oil/gas or hot water reservoirs. These technologies utilise pressurised water, which is applied inside the well to initiate and drive fractures as well as to open a network of existing natural fractures. To prevent the opened fractures from complete closure during production stage, small particles (proppants) are normally injected with the pressurised fluid. These particles are subjected to confining stresses when the fluid pressure is removed, which leads to a partial closure of the stimulated fractures. The residual fracture openings are the main outcome of such hydraulic stimulations as these openings significantly affect the permeability of the reservoirs and, subsequently, the well productivity. Past research was largely focused on the assessment of conditions and characteristics of fluid driven fractures as well as proppant placement techniques. Surprisingly, not much work was devoted to the assessment of the residual fracture profiles. In this work we develop a simplified non-linear mathematical model of residual closure of a plane crack filled with deformable particles and subjected to a remote compressive stress. It is demonstrated that the closure profile is significantly influenced by the distribution and compressibility of the particles, which are often ignored in the current evaluations of well productivity. © 2013 Springer Science+Business Media Dordrecht.Luiz Bortolan Neto, Andrei Kotouso

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel
    corecore