5,493 research outputs found

    Theory of the Magnetic Moment in Iron Pnictides

    Full text link
    We show that the combined effects of spin-orbit, monoclinic distortion, and p-d hybridization in tetrahedrally coordinated Fe in LaOFeAs invalidates the naive Hund's rule filling of the Fe d-levels. The two highest occupied levels have one electron each but as a result of the p-d hybridization have very different on-site repulsions. As a result, electrons in the upper level are more itinerant while those in the lower level are more localized. It is the xy-projection of the spin in the lower level that orders antiferromagnetically as the z-components of the spins in the two levels is shown to be vanishingly small in the ground state. The resulting magnetic moment is highly anisotropic with an in-plane value of 0.25−0.35μB0.25-0.35\mu_B per Fe and a z-projection of 0.06μB0.06\mu_B, both of which are in agreement with experiment. As a consequence, we arrive the minimal model that describes the electronic properties of LaOFeAs.Comment: Published Versio

    Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalcogenide PbX monolayers (X = S, Se, Te)

    Full text link
    One of the exciting features of two-dimensional (2D) materials is their electronic and optical tunability through strain engineering. Previously, we found a class of 2D ferroelectric Rashba semiconductors PbX (X = S, Se, Te) with tunable spin-orbital properties. In this work, based on our previous tight-binding (TB) results, we derive an effective low-energy Hamiltonian around the symmetry points that captures the effects of strain on the electronic properties of PbX. We find that strains induce gauge fields which shift the Rashba point and modify the Rashba parameter. This effect is equivalent to the application of in-plane magnetic fields. The out-of-plane strain, which is proportional to the electric polarization, is also shown to modify the Rashba parameter. Overall, our theory connects strain and spin splitting in ferroelectric Rashba materials, which will be important to understand the strain-induced variations in local Rashba parameters that will occur in practical applications

    Spin-Orbit Dirac Fermions in 2D Systems

    Full text link
    We propose a novel model for including spin-orbit interactions in buckled two dimensional systems. Our results show that in such systems, intrinsic spin-orbit coupling leads to a formation of Dirac cones, similar to Rashba model. We explore the microscopic origins of this behaviour and confirm our results using DFT calculations

    Two-dimensional square buckled Rashba lead chalcogenides

    Full text link
    We propose the lead sulphide (PbS) monolayer as a two-dimensional semiconductor with a large Rashba-like spin-orbit effect controlled by the out-of-plane buckling. The buckled PbS conduction band is found to possess Rashba-like dispersion and spin texture at the M and Γ points, with large effective Rashba parameters of λ∼5 eV Å and λ∼1 eV Å, respectively. Using a tight-binding formalism, we show that the Rashba effect originates from the very large spin-orbit interaction and the hopping term that mixes the in-plane and out-of-plane p orbitals of Pb and S atoms. The latter, which depends on the buckling angle, can be controlled by applying strain to vary the spin texture as well as the Rashba parameter at Γ and M. Our density functional theory results together with tight-binding formalism provide a unifying framework for designing Rashba monolayers and for manipulating their spin properties.P.Z.H., H.S.P., and D.K.C. acknowledge the support of the Physics and Mechanical Engineering Department at Boston University. P.Z.H. is grateful for the hospitality of the NUS Centre for Advanced 2D Materials and Graphene Research Centre where this work was initiated. D.K.C. acknowledges the hospitality of the Aspen Center for Physics, which is supported by the US National Science Foundation Grant No. PHY-1607611. A.S.R., A.C.,and A.H.C.N. acknowledge support by the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene" (Grant No. R-144-000295-281). (Physics and Mechanical Engineering Department at Boston University; PHY-1607611 - US National Science Foundation; R-144-000295-281 - National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene")Published versio

    Plasmonic Hot Spots in Triangular Tapered Graphene Microcrystals

    Full text link
    Recently, plasmons in graphene have been observed experimentally using scattering scanning near-field optical microscopy. In this paper, we develop a simplified analytical approach to describe the behavior in triangular samples. Replacing Coulomb interaction by a short-range one reduces the problem to a Helmholtz equation, amenable to analytical treatment. We demonstrate that even with our simplifications, the system still exhibits the key features seen in the experiment.Comment: 4 pages, 3 figure

    Algebraic computation of some intersection D-modules

    Get PDF
    Let XX be a complex analytic manifold, D⊂XD\subset X a locally quasi-homogeneous free divisor, EE an integrable logarithmic connection with respect to DD and LL the local system of the horizontal sections of EE on X−DX-D. In this paper we give an algebraic description in terms of EE of the regular holonomic D-module whose de Rham complex is the intersection complex associated with LL. As an application, we perform some effective computations in the case of quasi-homogeneous plane curves.Comment: 18 page

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Ferromagnetism without flat bands in thin armchair nanoribbons

    Full text link
    Describing by a Hubbard type of model a thin armchair graphene ribbon in the armchair hexagon chain limit, one shows in exact terms, that even if the system does not have flat bands at all, at low concentration a mesoscopic sample can have ferromagnetic ground state, being metallic in the same time. The mechanism is connected to a common effect of correlations and confinement.Comment: 37 pages, 12 figures, in press at Eur. Phys. Jour.

    Incommensurate Spin Ordering and Fluctuations in underdoped La_{2-x}Ba_{x}CuO_{4}

    Full text link
    Using neutron scattering techniques, we have studied incommensurate spin ordering as well as low energy spin dynamics in single crystal underdoped \LBCO with x∼\sim0.095 and 0.08; high temperature superconductors with TC∼_C \sim 27 K and 29 K respectively. Static two dimensional incommensurate magnetic order appears below TN_N=39.5 ±\pm 0.3 K in \LBCO (x=0.095) and a similar temperature for x=0.08 within the low temperature tetragonal phase. The spin order is unaffected by either the onset of superconductivity or the application of magnetic fields of up to 7 Tesla applied along the c-axis in the x=0.095 sample. Such magnetic field {\it independent} behaviour is in marked contrast with the field induced enhancement of the staggered magnetisation observed in the related \LSCO system, indicating this phenomenon is not a universal property of cuprate superconductors. Surprisingly, we find that incommensurability δ\delta is only weakly dependent on doping relative to \LSCO. Dispersive excitations in \LBCO (x=0.095) at the same incommensurate wavevector persist up to at least 60 K. The dynamical spin susceptibility of the low energy spin excitations saturates below \tc, in a similar manner to that seen in the superconducting state of La2_2CuO4+y_{4+y}.Comment: 9 pages, 7 figures, submitted to PRB, figures update
    • …
    corecore