5 research outputs found

    Anisotropy of magnetic susceptibility of the Pyrenean granites

    Get PDF
    In this paper, we report on a compilation of more than 2200 sites (more than 10,000 individual measurements) where anisotropy of magnetic susceptibility (AMS) was studied in granites from the Variscan Pyrenees. The standardization and homogenization of this information has allowed us to produce three Main Maps that synthesize all the information related with the AMS of the Pyrenean granites. We also describe the problems found during the construction of the database (variable geo-positioning, different published information, etc.). The information derived from 21 granite bodies, the database, and the synthesis maps (magnetic susceptibility, Km, and the orientation of the magnetic foliation, plane perpendicular to k3, and of the magnetic lineation, k1) allow us to see for the first time a complete image of this important kinematic and petrographic indicator

    Structure and emplacement of granite plutons in the Paleoproterozoic crust of Eastern Burkina Faso: rheological implications

    No full text
    International audienceThe Fada N?Gourma area in Burkina Faso is underlain by Paleoproterozoic rocks that make the northeastern West-African Craton. This region is composed of NE-trending volcano-sedimentary belts and foliated tonalites, affected by several shear zones. A generation of younger, ?2100 Ma-old, non-foliated biotite-bearing granites intrudes the former rock units. We have investigated the younger granite pluton of Kouare that was previously considered as forming a single body with the pluton of Satenga to the west, a pluton which likely belongs to the ?20 Ma more recent Tenkodogo-Yamba batholith. Magnetic fabric measurements have been combined with microstructural observations and the analysis of field and aeromagnetic data. The granite encloses angular enclaves of the host tonalites. Magmatic microstructures are preserved inside the pluton and solid-state, high-temperature deformation features are ubiquitous at its periphery. The presence of steeply plunging lineations in the pluton of Kouare and its adjacent host-rocks suggests that large volumes of granitic magmas became crystallized while they were ascending through the crust that was softened and steepened close to the contact. Around Kouare, the foliation in the host tonalites conforms with a map-scale, Z-shaped fold in between NNE-trending shear zones, implying a bulk clockwise rotation of the material contained in-between the shear zones, including the emplacing pluton. Regionally, the Fada N?Gourma area is concluded to result from NW-shortening associated with transcurrent shearing and vertical transfer of granitic magmas. This study concludes that the ?2200 Myears old juvenile crust of Burkina Faso was brittle before the intrusion of the biotite-granites, became softened close to them and that gravity-driven and regional scale wrench tectonics were active together

    The Sphene-Centered Ocellar Texture: An Effect of Grain-Supported Flow and Melt Migration in a Hyperdense Magma Mush

    No full text
    The sphene-centered ocellar texture consists of leucocratic ocelli with sphene (titanite) crystals at the center, enclosed in a biotite-rich matrix. This texture has been recognized worldwide in hybrid intermediate rocks. On the basis of structural, petrological, and geochronological data from selected outcrops of the Variscan Ribadelago pluton (NW Iberian Massif), we propose that the ocelli were formed by migration and accumulation of a residual melt through a plagioclase- and biotite-dominated crystalline framework. At the late stage of crystallization, the magma acted as a hyperdense suspension and reacted to the pressure gradient caused by the regional stress field, entering the domain of grain-supported flow. Microstructures reveal that aligned crystal domains arose in the crystal framework from the shearing and compaction of the crystal mush and behaved as magmatic microshears. Relative displacement of adjacent crystal clusters along these microshears corresponded to the onset of Reynolds dilatancy that generated an expansion of the crystal mush, involving melt migration and pore aperture. The mineralogy of the ocelli, dominated by andesine and sphene, represents the composition of the migrating melt. The chemistry of this late, Ti-rich melt stems from the incongruent melting of biotite. Magmatic sphene from the ocelli yields a U-Pb age of 317 +/- 1 Ma, which represents the final crystallization of the hybridized magmatic system. Moreover, this texture offers an opportunity to better understand the rheological behavior of highly crystallized magmas.Spanish Ministerio de Ciencia e Innovacion[CGL2007-60039]Spanish Ministerio de Ciencia e InnovacionSpanish Ministerio de Ciencia e Innovacion[CGL2010-14869]Spanish Ministerio de Ciencia e InnovacionGobierno VascoGobierno Vasco[IT-364-10

    Anisotropy of magnetic susceptibility of the Pyrenean granites

    No full text
    <p>In this paper, we report on a compilation of more than 2200 sites (more than 10,000 individual measurements) where anisotropy of magnetic susceptibility (AMS) was studied in granites from the Variscan Pyrenees. The standardization and homogenization of this information has allowed us to produce three <a href="https://doi.org/10.1080/17445647.2017.1302364" target="_blank">Main Maps</a> that synthesize all the information related with the AMS of the Pyrenean granites. We also describe the problems found during the construction of the database (variable geo-positioning, different published information, etc.). The information derived from 21 granite bodies, the database, and the synthesis maps (magnetic susceptibility, Km, and the orientation of the magnetic foliation, plane perpendicular to k3, and of the magnetic lineation, k1) allow us to see for the first time a complete image of this important kinematic and petrographic indicator.</p
    corecore