99 research outputs found

    Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of genomic signatures of colorectal cancer for risk stratification requires the study of large series of cancer patients with an extensive clinical follow-up. Multicentric clinical studies represent an ideal source of well documented archived material for this type of analyses.</p> <p>Methods</p> <p>To verify if this material is technically suitable to perform matrix-CGH, we performed a pilot study using macrodissected 29 formalin-fixed, paraffin-embedded tissue samples collected within the framework of the EORTC-GI/PETACC-2 trial for colorectal cancer. The scientific aim was to identify prognostic genomic signatures differentiating locally restricted (UICC stages II-III) from systemically advanced (UICC stage IV) colorectal tumours.</p> <p>Results</p> <p>The majority of archived tissue samples collected in the different centers was suitable to perform matrix-CGH. 5/7 advanced tumours displayed 13q-gain and 18q-loss. In locally restricted tumours, only 6/12 tumours showed a gain on 13q and 7/12 tumours showed a loss on 18q. Interphase-FISH and high-resolution array-mapping of the gain on 13q confirmed the validity of the array-data and narrowed the chromosomal interval containing potential oncogenes.</p> <p>Conclusion</p> <p>Archival, paraffin-embedded tissue samples collected in multicentric clinical trials are suitable for matrix-CGH analyses and allow the identification of prognostic signatures and aberrations harbouring potential new oncogenes.</p

    Formalin-fixed paraffin-embedded clinical tissues show spurious copy number changes in array-CGH profiles.

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) archival clinical specimens are invaluable in discovery of prognostic and therapeutic targets for diseases such as cancer. However, the suitability of FFPE-derived genetic material for array-based comparative genomic hybridization (array-CGH) studies is underexplored. In this study, genetic profiles of matched FFPE and fresh-frozen specimens were examined to investigate DNA integrity differences between these sample types and determine the impact this may have on genetic profiles. Genomic DNA was extracted from three patient-matched FFPE and fresh-frozen clinical tissue samples. T47D breast cancer control cells were also grown in culture and processed to yield a fresh T47D sample, a fresh-frozen T47D sample and a FFPE T47D sample. DNA was extracted from all the samples; array-CGH conducted and genetic profiles of matched samples were then compared. A loss of high molecular weight DNA was observed in the FFPE clinical tissues and FFPE T47D samples. A dramatic increase in absolute number of genetic alterations was observed in all FFPE tissues relative to matched fresh-frozen counterparts. In future, alternative fixation and tissue-processing procedures, and/or new DNA extraction and CGH profiling protocols, may be implemented, enabling identification of changes involved in disease progression using stored clinical specimens

    Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells

    Get PDF
    INTRODUCTION: CCN6/WISP3 belongs to the CCN (Cyr61, CTGF, Nov) family of genes that contains a conserved insulin-like growth factor (IGF) binding protein motif. CCN6 is a secreted protein lost in 80% of the aggressive inflammatory breast cancers, and can decrease mammary tumor growth in vitro and in vivo. We hypothesized that inhibition of CCN6 might result in the loss of a growth regulatory function that protects mammary epithelial cells from the tumorigenic effects of growth factors, particularly IGF-1. METHOD: We treated human mammary epithelial (HME) cells with a CCN6 hairpin short interfering RNA. RESULTS: CCN6-deficient cells showed increased motility and invasiveness, and developed features of epithelial-mesenchymal transition (EMT). Inhibition of CCN6 expression promoted anchorage-independent growth of HME cells and rendered them more responsive to the growth effects of IGF-1, which was coupled with the increased phosphorylation of IGF-1 receptor and insulin receptor substrate-1 (IRS-1). CONCLUSION: Specific stable inhibition of CCN6 expression in HME cells induces EMT, promotes anchorage-independent growth, motility and invasiveness, and sensitizes mammary epithelial cells to the growth effects of IGF-1

    Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data

    Get PDF
    BACKGROUND: Chromosomal abnormalities have been associated with most human malignancies, with gains and losses on some genomic regions associated with particular entities. METHODS: Of the 15429 cases collected for the Progenetix molecular-cytogenetic database, 5918 malignant epithelial neoplasias analyzed by chromosomal Comparative Genomic Hybridization (CGH) were selected for further evaluation. For the 22 clinico-pathological entities with more than 50 cases, summary profiles for genomic imbalances were generated from case specific data and analyzed. RESULTS: With large variation in overall genomic instability, recurring genomic gains and losses were prominent. Most entities showed frequent gains involving 8q2, while gains on 20q, 1q, 3q, 5p, 7q and 17q were frequent in different entities. Loss "hot spots" included 3p, 4q, 13q, 17p and 18q among others. Related average imbalance patterns were found for clinically distinct entities, e.g. hepatocellular carcinomas (ca.) and ductal breast ca., as well as for histologically related entities (squamous cell ca. of different sites). CONCLUSION: Although considerable case-by-case variation of genomic profiles can be found by CGH in epithelial malignancies, a limited set of variously combined chromosomal imbalances may be typical for carcinogenesis. Focus on the respective regions should aid in target gene detection and pathway deduction

    A Genomewide Screen for Suppressors of Alu-Mediated Rearrangements Reveals a Role for PIF1

    Get PDF
    Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition

    Array-CGH and breast cancer

    Get PDF
    The introduction of comparative genomic hybridization (CGH) in 1992 opened new avenues in genomic investigation; in particular, it advanced analysis of solid tumours, including breast cancer, because it obviated the need to culture cells before their chromosomes could be analyzed. The current generation of CGH analysis uses ordered arrays of genomic DNA sequences and is therefore referred to as array-CGH or matrix-CGH. It was introduced in 1998, and further increased the potential of CGH to provide insight into the fundamental processes of chromosomal instability and cancer. This review provides a critical evaluation of the data published on array-CGH and breast cancer, and discusses some of its expected future value and developments
    • …
    corecore