27 research outputs found

    Early Predictors of Objectively Measured Physical Activity and Sedentary Behaviour in 8–10 Year Old Children: The Gateshead Millennium Study

    Get PDF
    With a number of studies suggesting associations between early life influences and later chronic disease risk, it is suggested that associations between early growth and later physical activity (PA) may be a mediator. However, conflicting evidence exists for association between birth weight and childhood PA. In addition, it is important to know what other, potentially modifiable, factors may influence PA in children given its' association with childhood and later adiposity. We used the Gateshead Millennium Study (GMS) to identify predictors of childhood PA levels. The GMS is a cohort of 1029 infants born in 1999–2000 in Gateshead in northern England. Throughout infancy and early childhood, detailed information was collected. Assessments at age 9 years included body composition, objective measures of habitual PA and a range of lifestyle factors. Mean total volumes of PA (accelerometer count per minute, cpm) and moderate-vigorous intensity PA (MVPA), and the percentage of time spent in sedentary behaviour (%SB) were quantified and related to potential predictors using linear regression and path analysis. Children aged 8–10 years were included. Significant differences were seen in all three outcome variables between sexes and season of measurement (p<0.001). Restricting children’s access to television was associated with decreased MVPA. Increased paternal age was associated with significant increases in %SB (p = 0.02), but not MVPA or total PA. Increased time spent in out of school sports clubs was significantly associated with decreased %SB (p = 0.02). No significant associations were seen with birth weight. A range of factors, directly or indirectly, influenced PA and sedentary behaviour. However, associations differed between the different constructs of PA and %SB. Exploring further the sex differences in PA would appear to be useful, as would encouraging children to join out of school sports clubs

    Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future

    Get PDF
    Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Airborne emissions at skin surfaces: a potential biological exposure index

    Full text link
    Dermal exposures of methanol were administered in a clinical study designed to compare several biological indicators. Four subjects were exposed in five exposure sessions of varying length. In each session, a sequence of measurements of methanol concentrations in blood, breath, and headspace samples of air at exposed and unexposed skin were collected before and after dermal exposures. Skin headspace samples, collected in gas sampling bags, were designed to reflect equilibrium skin: air partitioning. At exposed skin, headspace samples were highly elevated for at least 8 h following exposure, indicating the presence of a methanol reservoir in skin. After exposure, methanol concentrations at exposed skin showed a rapid initial decline, then a slower first-order decrease. Methanol concentrations were clearly detectable in headspace samples at unexposed skin. Substantial transfer from exposed skin occurred due to mechanical contact and washing. When transfer was restricted, surface concentrations at unexposed skin were similar to levels in breath and were strongly correlated to methanol concentrations in blood. While results are preliminary due to the small sample sizes and several unresolved experimental issues, the simple, rapid, and noninvasive skin headspace measurements appear useful as a biological exposure indicator that clearly shows the presence and site of a dermal exposure, and measurements at unexposed skin reflect concentrations in blood.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47413/1/420_2004_Article_BF00381439.pd
    corecore