93 research outputs found
Distribution, stock structure, and growth of the squid Berryteuthis magister (Berry, 1913) (Cephalopoda, Gonatidae) during summer and fall in the western Bering Sea
Distribution, abundance, and length-frequency composition of schoolmaster gonate squid, Berryteuthis magister, were studied during seven trawl surveys in the western Bering Sea between June and November 1993. Statolith age analysis was undertaken for 1,381 B. magister to estimate age, stock structure, and both growth and maturation rates. Three kinds of growth increments were revealed in B. magister statoliths. Daily periodicity of the second-order increments was confirmed by two independent, indirect methods. According to our data, B. magister live >1 yr; the oldest specimen was about 16 months old. Berryteuthis magister is a slow-growing and slow-maturing squid, and males exhibit slower growth and earlier maturation than do females. Growth in length was best described by a logistic curve, with a larger asymptotic parameter for females. In summer, concentrations of B. magister were low within the whole region, whereas in September-October squids aggregated into dense shoals over the continental slope of the Navarin-Olyutorsky region and Olyutorsky Bay. Stock structure of B. magister was complicated: each month, from 5 to 12 (usually 7-8) monthly classes of squid were encountered in the western Bering Sea. Three seasonal groups of B. magister occurred in the region: winter-, summer- and fall-hatched squids utilizing resources of the continental slope in different ways. A possible life cycle for the B. magister fall-hatched group includes a longevity of ca. 2 yr: 6 mo of embryonic development and 18 mo of postembryonic growth
Marine epibenthic functional diversity on Flemish Cap (north- west Atlantic)âIdentifying trait responses to the environment and mapping ecosystem functions
Aim To characterize the functional diversity and selected ecological functions of marine epibenthic invertebrate communities at the ecosystem scale and to evaluate the relative contributions of environmental filtering, including bottom-contact fishing, and competitive interactions to benthic community assembly. Location Flemish Cap, an ecosystem production unit and fishing bank in the high seas of the north-west Atlantic Ocean. Methods Through the use of Hierarchical Modelling of Species Communities (HMSC), we have explored seven community response traits to the environment applied to 105 epibenthic species and evaluated the influence of such traits on the community assembly processes. Assumed bioturbation, nutrient cycling and habitat provision functions, linked to individual or a combination of biological traits, were mapped using random forest modelling. Results Functional richness within benthic communities reached an asymptote for trawl sets with roughly more than 30 species. Assemblages on top of the Flemish Cap (Peer reviewe
Spatio-Temporal Scaling of Solar Surface Flows
The Sun provides an excellent natural laboratory for nonlinear phenomena. We
use motions of magnetic bright points on the solar surface, at the smallest
scales yet observed, to study the small scale dynamics of the photospheric
plasma. The paths of the bright points are analyzed within a continuous time
random walk framework. Their spatial and temporal scaling suggest that the
observed motions are the walks of imperfectly correlated tracers on a turbulent
fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence
We present a series of models for the plasma properties along open magnetic
flux tubes rooted in solar coronal holes, streamers, and active regions. These
models represent the first self-consistent solutions that combine: (1)
chromospheric heating driven by an empirically guided acoustic wave spectrum,
(2) coronal heating from Alfven waves that have been partially reflected, then
damped by anisotropic turbulent cascade, and (3) solar wind acceleration from
gradients of gas pressure, acoustic wave pressure, and Alfven wave pressure.
The only input parameters are the photospheric lower boundary conditions for
the waves and the radial dependence of the background magnetic field along the
flux tube. For a single choice for the photospheric wave properties, our models
produce a realistic range of slow and fast solar wind conditions by varying
only the coronal magnetic field. Specifically, a 2D model of coronal holes and
streamers at solar minimum reproduces the latitudinal bifurcation of slow and
fast streams seen by Ulysses. The radial gradient of the Alfven speed affects
where the waves are reflected and damped, and thus whether energy is deposited
below or above the Parker critical point. As predicted by earlier studies, a
larger coronal ``expansion factor'' gives rise to a slower and denser wind,
higher temperature at the coronal base, less intense Alfven waves at 1 AU, and
correlative trends for commonly measured ratios of ion charge states and
FIP-sensitive abundances that are in general agreement with observations. These
models offer supporting evidence for the idea that coronal heating and solar
wind acceleration (in open magnetic flux tubes) can occur as a result of wave
dissipation and turbulent cascade. (abridged abstract)Comment: 32 pages (emulateapj style), 18 figures, ApJ Supplement, in press (v.
171, August 2007
The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents
Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues
Sperm transfer or spermatangia removal: postcopulatory behaviour of picking up spermatangium by female Japanese pygmy squid
In the Japanese pygmy squid Idiosepius paradoxus, females often pick up the spermatangium using their mouth (buccal mass) after copulation. To examine whether the female I. paradoxus directly transfers sperm into the seminal receptacle via this picking behaviour, or removes the spermatangium, we conducted detailed observations of picking behaviour in both virgin and copulated females and compared the sperm storage conditions in the seminal receptacle between females with and without spermatangia picking after copulation in virgin females. In all observations, elongation of the buccal mass occurred within 5 min after copulation. However, sperm volume in the seminal receptacle was not related to spermatangia picking. Observations using slow-motion video revealed that females removed the spermatangia by blowing or eating after picking. These results suggest that picking behaviour is used for sperm removal but not for sperm transfer. Moreover, the frequency of buccal mass elongation was higher in copulated females than in virgin females, consistent with the sequential mate choice theory whereby virgin females secure sperm for fertilisation, while previously copulated females are more selective about their mate. Female I. paradoxus may choose its mate cryptically through postcopulatory picking behaviour
- âŠ