25 research outputs found

    A Control Switch for Prothrombinase: Characterization of a Hirudin-Like Pentapeptide From the COOH Terminus of Factor VA Heavy Chain That Regulates the Rate and Pathway for Prothrombin Activation

    Get PDF
    Membrane-bound factor Xa alone catalyzes prothrombin activation following initial cleavage at Arg(271) and prethrombin 2 formation (pre2 pathway). Factor Va directs prothrombin activation by factor Xa through the meizothrombin pathway, characterized by initial cleavage at Arg(320) (meizo pathway). We have shown previously that a pentapeptide encompassing amino acid sequence 695-699 from the COOH terminus of the heavy chain of factor Va (Asp-Tyr-Asp-Tyr-Gln, DYDYQ) inhibits prothrombin activation by prothrombinase in a competitive manner with respect to substrate. To understand the mechanism of inhibition of thrombin formation by DYDYQ, we have studied prothrombin activation by gel electrophoresis. Titration of plasma-derived prothrombin activation by prothrombinase, with increasing concentrations of peptide, resulted in complete inhibition of the meizo pathway. However, thrombin formation still occurred through the pre2 pathway. These data demonstrate that the peptide preferentially inhibits initial cleavage of prothrombin by prothrombinase at Arg(320). These findings were corroborated by studying the activation of recombinant mutant prothrombin molecules rMZ-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A) which can be only cleaved at Arg(320) and Arg(271), respectively. Cleavage of rMZ-II by prothrombinase was completely inhibited by low concentrations of DYDYQ, whereas high concentrations of pentapeptide were required to inhibit cleavage of rP2-II. The pentapeptide also interfered with prothrombin cleavage by membrane-bound factor Xa alone in the absence of factor Va increasing the rate for cleavage at Arg(271) of plasma-derived prothrombin or rP2-II. Our data demonstrate that pentapeptide DYDYQ has opposing effects on membrane-bound factor Xa for prothrombin cleavage, depending on the incorporation of factor Va in prothrombinase

    The Structural Integrity of Anion Binding Exosite I of Thrombin Is Required and Sufficient for Timely Cleavage and Activation of Factor V and Factor VIII

    Get PDF
    Alpha-thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate tethering necessary for efficient catalysis. Alpha-thrombin catalyzes the activation of factor V and factor VIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by alpha-thrombin. We have used plasma-derived alpha-thrombin, beta-thrombin (a thrombin molecule that has only ABE-II available), and a recombinant prothrombin molecule rMZ-II (R155A/R284A/R271A) that can only be cleaved at Arg(320) (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a synthetic sulfated pentapeptide (DY(SO(3)(-))DY(SO(3)(-))Q, designated D5Q1,2) as an exosite-directed inhibitor of thrombin. The clotting time obtained with beta-thrombin was increased by approximately 8-fold, whereas rMZ-IIa was 4-fold less efficient in promoting clotting than alpha-thrombin under similar experimental conditions. Alpha-thrombin readily activated factor V following cleavages at Arg(709), Arg(1018), and Arg(1545) and factor VIII following proteolysis at Arg(372), Arg(740), and Arg(1689). Cleavage of both procofactors by alpha-thrombin was significantly inhibited by D5Q1,2. In contrast, beta-thrombin was unable to cleave factor V at Arg(1545) and factor VIII at both Arg(372) and Arg(1689). The former is required for light chain formation and expression of optimum factor Va cofactor activity, whereas the latter two cleavages are a prerequisite for expression of factor VIIIa cofactor activity. Beta-thrombin was found to cleave factor V at Arg(709) and factor VIII at Arg(740), albeit less efficiently than alpha-thrombin. The sulfated pentapeptide inhibited moderately both cleavages by beta-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. Overall the data demonstrate that ABE-I alone of alpha-thrombin can account for the interaction of both procofactors with alpha-thrombin resulting in their timely and efficient activation. Because formation of meizothrombin precedes that of alpha-thrombin, our findings also imply that meizothrombin may be the physiological activator of both procofactors in vivo in the presence of a procoagulant membrane surface during the early stages of coagulation

    Incorporation of Factor VA Into Prothrombinase Is Required for Coordinated Cleavage of Prothrombin by Factor Xa

    Get PDF
    Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages

    The Interaction of Fragment 1 of Prothrombin With the Membrane Surface Is a Prerequisite for Optimum Expression of Factor VA Cofactor Activity Within Prothrombinase

    No full text
    Incorporation of factor (F) Va into prothrombinase directs prothrombin activation by FXa through the meizothrombin pathway, characterized by initial cleavage at Arg(320). We have shown that a pentapeptide with the sequence DYDYQ specifically inhibits this pathway. It has been also established that Hir(54-65)(SO(3)(-)) is a specific inhibitor of prothrombinase. To understand the role of FVa within prothrombinase at the molecular level, we have studied thrombin formation by prothrombinase in the presence of various prothrombin-derived fragments alone or in combination. Activation of prethrombin 1 is slow with cleavages at Arg(320) and Arg(271) occurring with similar rates. Addition of purified fragment 1 to prethrombin 1 accelerates both the rate of cleavage at Arg(320) and thrombin formation. Both reactions were inhibited by Hir(54-65)(SO(3)(-)) while DYDYQ had no significant inhibitory effect on prethrombin 1 cleavage in the absence or presence of fragment 1. Similarly, activation of prethrombin 2 by prothrombinase, is inhibited by Hir(54-65)(SO(3)(-)), but is not affected by DYDYQ. Addition of purified fragment 1*2 to prethrombin 2 accelerates the rate of cleavage at Arg(320) by prothrombinase. This addition also results in a significant inhibition of thrombin formation by DYDYQ and is concurrent with the elimination of the inhibitory effect of Hir(54-65)(SO(3)(-)) on the same reaction. Finally, a membrane-bound ternary complex composed of prethrombin 2/fragment 1*2/Hir(54-65)(SO(3)(-)) is inhibited by DYDYQ. Altogether, the data demonstrate that membrane-bound fragment 1 is required to promote optimum Fva cofactor activity which in turn is translated by efficient initial cleavage of prothrombin by prothrombinase at Arg(320)
    corecore