195 research outputs found

    Effective impedance for the threshold of loss of Landau damping

    No full text
    Loss of Landau damping (LLD) in the longitudinal plane is an important intensity limitation in existing and future hadron accelerators. One of the outcomes of the recent study [I. Karpov, T. Argyropoulos, and E. Shaposhnikova. Phys. Rev. Accel. Beams, 24, 011002, 2021] is an expression to estimate an effective impedance for the evaluation of the LLD threshold. In this project, the applicability of the formula was investigated for an impedance model given by a sum of broadband and narrowband resonators. Agreement at below 70% error was achieved by using a new method for choosing the truncation point in the sum over harmonics. Applying the new method to the SPS impedance, the LLD threshold was predicted with a maximum error of 40% in a wide range of bunch lengths

    Bremsstrahlung as a probe of baryon stopping in heavy-ion collisions

    No full text
    Abstract In collisions between heavy ions at ultra-relativistic energies the participating protons lose energy, which is converted into new particles. As the protons slow down, they emit bremsstrahlung radiation. The yield and angular distribution of the emitted radiation are sensitive probes of how much energy the incoming protons have lost. In this paper, the spectrum of bremsstrahlung radiation is calculated for different stopping scenarios, and the results are compared with the expected yield of photons from hadronic interactions

    First measurement of the t|t|-dependence of incoherent J/ψ\psi photonuclear production

    No full text
    International audienceThe first measurement of the cross section for incoherent photonuclear production of J/ψ\psi vector meson as a function of the Mandelstam t|t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, y<0.8|y|<0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. This rapidity interval corresponds to a Bjorken-xx range (0.3(0.3-1.4)×1031.4)\times 10^{-3}. Cross sections are reported in five t|t| intervals in the range 0.04<t<10.04<|t|<1~GeV2^2 and compared to the predictions of different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a t|t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data

    Measurement of Non-prompt D0\rm D^0-meson Elliptic Flow in Pb-Pb Collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe elliptic flow (v2v_2) of D0\rm D^0 mesons from beauty-hadron decays (non-prompt D0\rm D^0) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{\rm NN}} = 5.02 TeV with the ALICE detector at the LHC. The D0\rm D^0 mesons were reconstructed at midrapidity (y<0.8|y|<0.8) from their hadronic decay D0Kπ+\mathrm{D^0 \to K^-\pi^+}, in the transverse momentum interval 2<pT<122 < p_{\rm T} < 12 GeV/cc. The result indicates a positive v2v_2 for non-prompt D0\rm D^0 mesons with a significance of 2.7σ\sigma. The non-prompt D0\rm D^0-meson v2v_2 is lower than that of prompt non-strange D mesons with 3.2σ\sigma significance in 2<pT<82 < p_{\rm T} < 8 GeV/cc, and compatible with the v2v_2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    International audienceThe first measurements of skewness and kurtosis of mean transverse momentum (pT\langle p_\mathrm{T}\rangle) fluctuations are reported in Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV, Xe-Xe collisions at sNN\sqrt{s_\mathrm{NN}}== 5.44 TeV and pp collisions at s=5.02\sqrt{s} = 5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size dNch/dηη<0.51/3\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}, using charged particles with transverse momentum (pTp_\mathrm{T}) and pseudorapidity (η\eta), in the range 0.2<pT<3.00.2 < p_\mathrm{T} < 3.0 GeV/cc and η<0.8|\eta| < 0.8, respectively. In Pb-Pb and Xe-Xe collisions, positive skewness is observed in the fluctuations of pT\langle p_\mathrm{T}\rangle for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of pT\langle p_\mathrm{T}\rangle fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb-Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb--Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    Photoproduction of K+^{+}K^{-} pairs in ultra-peripheral collisions

    No full text
    International audienceK+^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020)\phi (1020) mesons, or directly as non-resonant K+^{+}K^{-} pairs. Measurements of K+^{+}K^{-} photoproduction probe the couplings between the ϕ(1020)\phi (1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+^{+}K^{-} pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+^{+}K^{-} production. There is significant K+^{+}K^{-} production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.41.1 < M_{\rm{KK}} < 1.4 GeV/c2c^2 above the ϕ(1020)\phi (1020) resonance, for rapidity yKK<0.8|y_{\rm{KK}}|<0.8 and pT,KK<0.1p_{\rm T,KK} < 0.1 GeV/cc, the measured coherent photoproduction cross section is dσ/dy\mathrm{d}\sigma/\mathrm{d}y = 3.37 ± 0.61\pm\ 0.61 (stat.) ± 0.15\pm\ 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,nW_{\gamma \mathrm{Pb, n}} ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020)\phi (1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020)\phi (1020) decays, direct K+^{+}K^{-} photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+^{+}K^{-} photoproduction are presented

    Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p-Pb, and Pb-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/NchTR_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and NchT\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p-Pb, and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p-Pb)

    Femtoscopic correlations of identical charged pions and kaons in pp collisions at s=13\sqrt{s}=13 TeV with event-shape selection

    No full text
    International audienceCollective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE collaboration on charged pion and kaon pairs produced in pp collisions at s=13\sqrt{s}=13 TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied
    corecore